The most significant factors influencing beer quality are the variety of aroma flavours that stem from a complex system of interactions between many hundreds of compounds. With increasing demand for flavour control and enhanced productivity, the presence of consistent and balanced amounts of higher alcohols and esters are critical aspects of process control. Extensive research has focused on the formation of flavour compounds by the brewing yeast and the factors that influence their synthesis. Fermenting wort is a complex medium from which the brewing yeast utilizes nutrients for living and growth and to where it places its metabolic by-products. Thus, changes in wort composition will greatly influence final beer aroma. The current paper reviews up-to-date knowledge on the contribution of wort composition to the flavour quality of the final product, in particular higher alcohols and esters. Different wort constituents involved in the biosynthesis of these aromatic substances, and which therefore require control during brewery fermentations, are reviewed.
Background: Aquaporin (AQP) proteins comprise a group of membrane intrinsic proteins (MIPs) that are responsible for transporting water and other small molecules, which is crucial for plant survival under stress conditions including salt stress. Despite the vital role of AQPs, little is known about them in cucumber (Cucumis sativus L.). Results: In this study, we identified 39 aquaporin-encoding genes in cucumber that were separated by phylogenetic analysis into five sub-families (PIP, TIP, NIP, SIP, and XIP). Their substrate specificity was then assessed based on key amino acid residues such as the aromatic/Arginine (ar/R) selectivity filter, Froger's positions, and specificity-determining positions. The putative cis-regulatory motifs available in the promoter region of each AQP gene were analyzed and results revealed that their promoter regions contain many abiotic related cis-regulatory elements. Furthermore, analysis of previously released RNA-seq data revealed tissue-and treatment-specific expression patterns of cucumber AQP genes (CsAQPs). Three aquaporins (CsTIP1;1, CsPIP2;4, and CsPIP1; 2) were the most transcript abundance genes, with CsTIP1;1 showing the highest expression levels among all aquaporins. Subcellular localization analysis in Nicotiana benthamiana epidermal cells revealed the diverse and broad array of sub-cellular localizations of CsAQPs. We then performed RNA-seq to identify the expression pattern of CsAQPs under salt stress and found a general decreased expression level of root CsAQPs. Moreover, qRT-PCR revealed rapid changes in the expression levels of CsAQPs in response to diverse abiotic stresses including salt, polyethylene glycol (PEG)-6000, heat, and chilling stresses. Additionally, transient expression of AQPs in N. benthamiana increased leaf water loss rate, suggesting their potential roles in the regulation of plant water status under stress conditions. Conclusions: Our results indicated that CsAQPs play important roles in response to salt stress. The genome-wide identification and primary function characterization of cucumber aquaporins provides insight to elucidate the complexity of the AQP gene family and their biological functions in cucumber.
BackgroundThe experiment evaluated the effect of nutrition levels and sex on the growth performance, carcass characteristics and meat quality of F1 Angus × Chinese Xiangxi yellow cattle.MethodsDuring the background period of 184 d,23 steers and 24 heifers were fed the same ration,then put into a 2 × 2 × 2 factorial arrangement under two levels of - dietary energy (TDN: 70/80% DM), protein (CP: 11.9/14.3% DM) and sex (S: male/female) during the finishing phase of 146 d. The treatments were - (1) high energy/low protein (HELP), (2) high energy/high protein (HEHP), (3) low energy/low protein (LELP) and (4) low energy/high protein (LEHP). Each treatment used 6 steers and 6 heifers, except for HELP- 5 steers and 6 heifers.ResultsGrowth rate and final carcass weight were unaffected by dietary energy and protein levels or by sex. Compared with the LE diet group, the HE group had significantly lower dry matter intake (DMI, 6.76 vs. 7.48 kg DM/d), greater chest girth increments (46.1 vs. 36.8 cm), higher carcass fat (19.9 vs.16.3%) and intramuscular fat content (29.9 vs. 22.8% DM). The HE group also had improved yields of top and medium top grade commercial meat cuts (39.9 vs.36.5%). The dressing percentage was higher for the HP group than the LP group (53.4 vs. 54.9%). Steers had a greater length increment (9.0 vs. 8.3 cm), but lower carcass fat content (16.8 vs. 19.4%) than heifers. The meat quality traits (shear force value, drip loss, cooking loss and water holding capacity) were not affected by treatments or sex, averaging 3.14 kg, 2.5, 31.5 and 52.9%, respectively. The nutritive profiles (both fatty and amino acid composition) were not influenced by the energy or protein levels or by sex.ConclusionsThe dietary energy and protein levels and sex significantly influenced the carcass characteristics and chemical composition of meat but not thegrowth performance, meat quality traits and nutritive profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.