Open the gate: Thermoresponsive gating membranes based on interpenetrating polymer networks composed of polyacrylamide (PAAM) and poly(acrylic acid) (PAAC) have inverse gating characteristics, with opening of the membrane pores induced by a decrease rather than an increase in temperature (see picture; UCST=upper critical solution temperature). The membranes provide a new mode of phase‐transition behavior for thermoresponsive “smart” membrane actuators.
We have successfully prepared monodispersed thermoresponsive core-shell hydrogel microspheres with a mean diameter of 200-400 nm with poly(N-isopropylacrylamide-co-styrene) [P(NIPAM-co-St)] cores and poly(N-isopropylacrylamide) (PNIPAM) shells. The submicrometer-sized monodispersed P(NIPAM-co-St) core seeds were prepared by using a surfactant-free emulsion polymerization method, and the PNIPAM shell layers were fabricated onto the core seeds by using a seed polymerization method. The particle size, morphology and monodispersity, and thermoresponsive characteristics of the prepared microspheres were experimentally studied. In the preparation of P(NIPAM-co-St) seeds, with increasing the initiator dosage, the mean diameters and the dispersal coefficients were almost at the same levels at first; however, when the initiator dosage increased further to a critical amount, the mean diameters decreased drastically and the monodispersity became worse significantly. With increasing the stirring rate, the particle diameter decreased, and when the stirring rate was larger than 600 rpm, the monodispersity became worse obviously. With increasing the phase ratio, the mean diameter became larger simply, and the monodispersity became worse first and then became better again. With increasing the reaction time, the particle sizes nearly did not change, while the monodispersity gradually became better slightly. For the core-shell microspheres, with increasing the NIPAM dosage in the preparation of the PNIPAM shell layers, the mean diameters became larger simply, the monodispersity became better, and the thermoresponsive swelling ratio of the hydrodynamic diameters increased.
In this study, we report on a novel composite membrane system for pH‐responsive controlled release, which is composed of a porous membrane with linear grafted, positively pH‐responsive polymeric gates acting as functional valves, and a crosslinked, negatively pH‐responsive hydrogel inside the reservoir working as a functional pumping element. The proposed system features a large responsive release rate that goes effectively beyond the limit of concentration‐driven diffusion due to the pumping effects of the negatively pH‐responsive hydrogel inside the reservoir. The pH‐responsive gating membranes were prepared by grafting poly(methacrylic acid) (PMAA) linear chains onto porous polyvinylidene fluoride (PVDF) membrane substrates using a plasma‐graft pore‐filling polymerization, and the crosslinked poly(N,N‐dimethylaminoethyl methacrylate) (PDM) hydrogels were synthesized by free radical polymerization. The volume phase‐transition characteristics of PMAA and PDM were opposite. The proposed system opens new doors for pH‐responsive “smart” or “intelligent” controlled‐release systems, which are highly attractive for drug‐delivery systems, chemical carriers, sensors, and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.