Purpose
Type 2 diabetes mellitus (T2DM) is a complex genetic disease associated with genetic and environmental factors. Previous studies have shown that changes in the gut microbiota may affect the development of host metabolic diseases and promote the progression of T2DM. Tang-ping-san (TPS) decoction can effectively treat T2DM. However, its specific mechanisms must be evaluated.
Patients and Methods
In the present study, we established an animal model of T2DM using a high‑fat diet (HFD) with intraperitoneal injection streptozotocin injection.
Results
The therapeutic effect of TPS decoction on T2DM in mice was initially evaluated. TPS decoction was found to improve hyperglycemia, hyperlipidemia, insulin resistance, and pathological liver, pancreatic, and colon changes. Moreover, it reduced the pro-inflammatory cytokine levels. Based on 16SrRNA sequencing, TPS decoction reduced the
Firmicutes/Bacteroidetes
ratio at the phylum level. At the genus level, it increased the relative abundances of
Akkermansia, Muribaculaceae
, and the
Eubacterium coprostanoligenes
group and decreased the relative abundance of
Fusobacterium, Escherichia coli, Dubosiella
, and
Helicobacter
.
Conclusion
TPS decoction improves T2DM and liver function and reduces the risk of hyperglycemia, hyperlipidemia, insulin resistance, pathological organ changes, and inflammatory reactions. The mechanism of TPS decoction in T2DM can be correlated with the reversal of gut microbiota dysfunction and repair of the intestinal mucosal barrier.
Objectives
In this study, we focused on the function of nuclear factor E2–related factor 2 (Nrf2) in acute pancreatitis (AP), which has been shown to have protective effects in gliomas, hepatocytes, and astrocytes.
Methods
Acute pancreatitis cell line and animal model were induced by administration of lipopolysaccharide and cerulein into the cell supernatant or intraperitoneal injection. Oxidative stress status was evaluated by measuring the level of amylase, C-reactive protein, malondialdehyde, superoxide dismutase, and myeloperoxidase. Morphological alterations in the pancreas were evaluated by hematoxylin-eosin staining, the wet-to-dry weight ratio, and the pathology injury scores. Western blot, reverse transcription-polymerase chain reaction, and immunofluorescence staining were performed to analyze the expression of Nrf2, Heme oxygenase 1, and NAD(P)H: quinone oxidoreductase 1.
Results
Overexpression of Nrf2 inhibits oxidative stress and inflammatory responses by inducting the expression of superoxide dismutase as well as reducing the level of amylase, malondialdehyde, and myeloperoxidase in the AR42J rat pancreatic acinar cells in AP. Importantly, overexpression of Nrf2 displayed the same protective effect in vivo. Data from an AP rat model showed that Nrf2 could relieve pancreatic damage.
Conclusions
These results indicated that Nrf2 has a protective role in lipopolysaccharide and cerulein-induced cytotoxicity, providing potential therapeutic strategies for the treatment of AP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.