The critical chain scheduling and buffer management (CC/BM) methodology has proven to be a favorable approach to schedule resource-constrained projects and to offer a valuable control tool for monitoring projects under uncertainty. The previous studies on CC/BM seem to have neglected the cost performance, which might render its wider applications to the modern economic activities that are mostly performed in a project way. This paper presents an improved CC/BM framework that allows additional resource allocation/reallocation to bring forward activity starting times based on cost and schedule stability criteria. In the planning phase, the decision is made concerning the regular resource availability period in order to minimize the expected resource costs. In the execution phase, a scheduled order repair method for rescheduling along with two reactive resource allocation procedures as the corrective action whenever delays are beyond a certain buffer threshold are presented and examined in order to exhibit a comprehensive project schedule/cost control system that is adaptive to the CC/BM management logic. Finally, our computational experiment demonstrates the benefits of the proposed reactive methods under different cost or availability parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.