The long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) has a role in cell proliferation and migration. Angiomotin, encoded by the AMOT gene, is a protein that regulates the migration and organization of endothelial cells. SNHG12 and AMOT have been shown to play a role in a variety of human cancers but have yet to be studied in detail in human osteosarcoma. Tissue samples from primary osteosarcoma (n = 20) and adjacent normal tissues (n = 20), the osteosarcoma cell lines, SAOS-2, MG-63, U-2 OS, and the human osteoblast cell line hFOB (OB3) were studied using Western blot for angiomotin, and quantitative real-time polymerase chain reaction for the expression of SNHG12 and AMOT. The expression of SNHG12 was knocked down using RNA interference. Cell migration assays were performed. Cell apoptosis was studied using flow cytometry. SNHG12 and AMOT messenger RNA (mRNA) expression was upregulated in osteosarcoma tissues and cell lines when compared with normal tissues and cells. Upregulation of AMOT mRNA was associated with upregulation of SNHG12. Knockdown of SNHG12 reduced the expression of angiomotin in osteosarcoma cells and suppressed cell proliferation and migration but did not affect cell apoptosis. This preliminary study has shown that the lncRNA SNHG12 promotes cell proliferation and migration by upregulating AMOT gene expression in osteosarcoma cells in vivo and in vitro. Further studies are recommended to investigate the role of SNHG12 and AMOT expression in tumor cell proliferation and migration and angiogenesis in osteosarcoma and a range of malignant mesenchymal tumors.
BackgroundThe open microdiscectomy is the most common surgical procedure for the decompression of radiculopathy caused by lumbar disk herniation. To date, a variety of minimally invasive (MI) techniques have been developed. In the last decades, endoscopic techniques have been developed to perform discectomy. The transforaminal endoscopic discectomy (TED) with posterolateral access evolved out of the development of endoscopic techniques.MethodsA systematic literature search was performed using the PubMed, EMBASE, and Cochrane Library databases for trials written in English. The randomized trials and observational studies that met our inclusion criteria were subsequently included. Two reviewers respectively extracted data and estimated the risk of bias. All statistical analyses were performed using Review Manager 5.3.ResultsFive prospective and four retrospective studies involving 1527 patients were included. The results of the meta-analysis indicated that there were significant differences between the two groups in length of hospital stay (MD = − 8.41, 95% CI − 10.26, − 6.56; p value < 0.00001). However, there were no significant differences in the leg visual analog scale (VAS) scores, the Oswestry Disability Index (ODI) scores, and the incidence of complications and recurrence.ConclusionsThe transforaminal endoscopic discectomy is superior to open microdiscectomy in the length of hospital stay. However, there were no differences in leg pain, functional recovery, and incidence of complications between TED and MD in treating LDH.
MicroRNAs (miRNAs) have a role in the development and progression of human malignancy. The expression of miR-497 is decreased in malignant tumors, which suggests a role for miR-497 as a tumor suppressor. Angiomotin is encoded by the AMOT gene, which is a target for miR-497. Angiomotin has a role in angiogenesis, cell proliferation, and invasion in human malignancies, including osteosarcoma. However, the role of miR-497 in human osteosarcoma is unknown. This preliminary study included human osteosarcoma tissues and normal tissues from 20 patients, the osteosarcoma cell lines, MG-63, SAOS-2, U-2 OS, and the human osteoblast cell line hFOB (OB3). Western blots for angiomotin and quantitative real-time polymerase chain reaction for the expression of miR-497 and AMOT were performed. Knockdown studies were performed using RNA interference and transfection studies used miR-497 mimics. Quantitative cell migration assays were performed, and cell apoptosis was studied by flow cytometry. Osteosarcoma cells and cell lines showed reduced expression of miR-497 and increased expression of angiomotin. Transfection of osteosarcoma cells with miR-497 mimics suppressed the expression of angiomotin. Results from a dual-luciferase reporter system supported AMOT as a direct target gene of miR-497. Knockdown of AMOT using RNA interference resulted in inhibition of osteosarcoma cell proliferation, migration, and invasion. These preliminary studies support a role for miR-497 as a suppressor of AMOT gene expression in human osteosarcoma cells, resulting in suppression of tumor cell proliferation and invasion. Further studies are recommended to investigate the role of miR-497 in osteosarcoma and other malignant mesenchymal tumors.
Background/Aims: Low back pain has become one of the most common musculoskeletal diseases in the world. Studies have shown that intervertebral disc degeneration (IDD) is an important factor leading to low back pain, but the mechanisms underlying IDD remain largely unknown. Research over the past decade has suggested critical roles for microRNAs (miRNAs) in natural growth and disease progression. However, it remains poorly understood whether circular RNAs participate in IDD. Methods: Clinical IDD samples were collected from 20 patients who underwent discectomy. Weighted gene co-expression network analysis was used to identify the co-expression miRNA network modules (highly co-expressed clusters of miRNAs) that were associated with IDD grade. Results: miR-3150a-3p was the most significantly up-regulated miRNA in module “Blue.” Notably, aggrecan (ACAN) was identified as a direct target gene of miR-3150a-3p and ACAN expression was regulated by miR-3150a-3p. Overexpression of miR-3150a-3p decreased ACAN expression in nucleus pulposus cells, whereas inhibition of miR-3150a-3p increased ACAN expression. In addition, ACAN expression was negatively correlated with IDD grade. Conclusion: Our study suggests that the reduction of ACAN expression induced by the upregulation of miR-3150a-3p might participate in the development of IDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.