This paper presents recent developments in the Artequakt project which seeks to automatically extract knowledge about artists from the Web, populate a knowledge base, and use it to generate personalized narrative biographies. An overview of the system architecture is presented and the three key components of that architecture are explained in detail, namely knowledge extraction, information management and biography construction. An example experiment is detailed and further challenges are outlined.
This text sets out a series of approaches to the analysis and synthesis of the World Wide Web, and other web-like information structures. A comprehensive set of research questions is outlined, together with a sub-disciplinary breakdown, emphasising the multi-faceted nature of the Web, and the multi-disciplinary nature of its study and development. These questions and approaches together set out an agenda for Web Science, the science of decentralised information systems. Web Science is required both as a way to understand the Web, and as a way to focus its development on key communicational and representational requirements. The text surveys central engineering issues, such as the development of the Semantic Web, Web services and P2P. Analytic approaches to discover the Web's topology, or its graph-like structures, are examined. Finally, the Web as a technology is essentially socially embedded; therefore various issues and requirements for Web use and governance are also reviewed.
The state of the art in human interaction with computational systems blurs the line between computations performed by machine logic and algorithms, and those that result from input by humans, arising from their own psychological processes and life experience. Current socio-technical systems, known as 'social machines' exploit the large-scale interaction of humans with machines. Interactions that are motivated by numerous goals and purposes including financial gain, charitable aid, and simply for fun. In this paper we explore the landscape of social machines, both past and present, with the aim of defining an initial classificatory framework. Through a number of knowledge elicitation and refinement exercises we have identified the polyarchical relationship between infrastructure, social machines, and large-scale social initiatives. Our initial framework describes classification constructs in the areas of contributions, participants, and motivation. We present an initial characterization of some of the most popular social machines, as demonstration of the use of the identified constructs. We believe that it is important to undertake an analysis of the behaviour and phenomenology of social machines, and of their growth and evolution over time. Our future work will seek to elicit additional opinions, classifications and validation from a wider audience, to produce a comprehensive framework for the description, analysis and comparison of social machines. 1. WHAT ARE SOCIAL MACHINES Once upon a time 'machines' were programmed by programmers and used by users. The success of the Web has changed this relationship: we now see configurations of people interacting with content and with each other, typified by social Web sites. Rather than drawing a line through such Web-based systems to separate the human and digital parts (as computer science has traditionally done), we can now draw a line around them and treat each such compound as a 'social machine'-a machine in which the two aspects are seamlessly interwoven. This was the insight be-Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Twitter has redefined the way social activities can be coordinated; used for mobilizing people during natural disasters, studying health epidemics, and recently, as a communication platform during social and political change. As a large scale system, the volume of data transmitted per day presents Twitter users with a problem: how can valuable content be distilled from the back chatter, how can the providers of valuable information be promoted, and ultimately how can influential individuals be identified?To tackle this, we have developed a model based upon the Twitter message exchange which enables us to analyze conversations around specific topics and identify key players in a conversation. A working implementation of the model helps categorize Twitter users by specific roles based on their dynamic communication behavior rather than an analysis of their static friendship network. This provides a method of identifying users who are potentially producers or distributers of valuable knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.