In the current investigation, total phenols and flavonoids contents of Eleutherine bulbosa (Mill.) Urb. bulbs, leaves, and flowers were quantified by Folin–Ciocalteu's and borohydride/chloroquinone methods, respectively. Antioxidant activity of the plant extracts was evaluated by means of peroxide scavenging capacity assay and by cell antioxidation method. Antioxidant activity of E. bulbosa bulbs, leaves, and flowers was correlated with total phenols and flavonoids. The total phenols and flavonoids of the bulbs of E. bulbosa were higher than leaves and flower and its antioxidant activity was also stronger than leaves and flowers of E. bulbosa. The higher content of flavonoids or total phenols, the stronger the antioxidant capacity in vitro. The antioxidant activity of E. bulbosa extract showed it's certain nutritional value and therefore had the potential as a source of natural antioxidants.
In this study a variety of phloroglucinols were isolated from the plant, and the activity experiment showed that the phloroglucinols had strong antifungal activity, especially methylphloroglucinol derivatives such as aspidin PB, dryofragin, aspidinol, aspidin BB, aspidin AB, and albicanol, in which the hydroxyl group of methylphloroglucinol is the active group of compounds, and C-2 or C-6 is the active site. The introduction of different groups in this position could change the properties and bioactivity of the compounds. In this study, different functional groups were introduced to the structure of methylphloroglucinol to obtain methylphloroglucinol derivatives that were synthesized, and antidermatophyte activities on Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis, and Gypsum microspore bacteria were evaluated. Molecular docking verified its ability to combine the protein binding site. The antidermatophyte mechanism of compounds on cytochrome P450 sterol 14a-demethylase, squalene epoxidase, and β-1,3-glucan synthase was investigated by the enzyme-linked immunosorbent assay. The results showed that compounds had an inhibitory effect on four kinds of common dermatophytes in varying degrees, in which compound g had the strongest activities, the binding mode of methylphloroglucinol and its derivatives were similar to those of three enzymes, and compounds e and g had significant effects on the activity of the three enzymes, and compound g had a slightly stronger effect than the blank group. Compounds e and g also had a significant effect on the ergosterol synthesis of M. canis. This study could supply some antidermatophyte leading structure and possible mechanism for studying and developing new antifungal agents.
Janus kinase (JAK) is a non receptor tyrosine protein kinase, which has attracted wide attention and JAK inhibitors are mainly used to screen therapeutic drugs for hematological diseases, tumors, rheumatoid arthritis (RA) and psoriasis. Filgotinib is an oral small molecule JAK inhibitor which is currently at the clinical stage to treat Crohn's disease (CD) and rheumatoid arthritis. In this study, we designed novel triazolopyridine derivatives A1-A4 using Filgotinib as the lead compound, then replaced cyclopropane with trifluoromethane and replaced triazolopyridine with imidazopyrazine to get B1-B4 by isosteric principle of bioelectronics. These compounds were prepared in this work, and the corresponding effects against JAK1, JAK2 and JAK3 were assessed. The results indicated that B2 had stronger inhibitory effect on JAK1 and JAK3. A1 and A2 showed a good inhibitory effect on JAK1. Molecular docking results showed that compounds A1, A2 and B2 bind well to protein binding sites. These compounds can supply leading compounds for developing rheumatoid arthritis and Crohn's drugs.
Neratinib is an oral pan HER inhibitor, that irreversibly inhibits EGFR and HER2 and was proven to be effective against multiple EGFR mutations. In previous study, we reported spiro [indoline-3, 4′-piperidine]-2-ones as anticancer agents. In this study, we designed aminopyridine-containing spiro [indoline-3,4′-piperidine] derivatives
A1-A4
using Neratinib and spiro [indoline-3, 4′-piperidine]-2-one compound patented as lead structure, then replaced piperidine with cyclopropane to obtain
B1-B7
and replaced indoline with benzmorpholine to get
C1-C4
and
D1-D2
. We synthesized these compounds and evaluated their residual activities under 0.5 M drug concentration on EGFR and ERBB2. Most of compounds showed stronger inhibition on EGFR-wt and ERBB2, in which
A1-A4
showed excellent inhibitory activity with inhibition percentage on EGFR-wt kinase of 7%, 6%, 19%, 27%, respectively and 9%, 5%, 12%, 34% on ERBB2 kinase compared with 2% and 6% of Neratinib.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.