Autophagy is vital for maintaining cellular homeostasis through removing impaired organelles. It has recently been found to play pivotal roles in diabetes mellitus (DM), which is associated with increased bone fracture risk and loss of bone density. However, the mechanism whereby autophagy modulates DM-induced bone loss is not fully elucidated. Previous work has shown that 1α,25-Dihydroxyvitamin D3 (1,25D) exerts positive effects on autophagy, thus affecting bone metabolism. Here, we investigated whether autophagy was involved in the regulation of diabetic bone metabolism. Using Micro-CT, Elisa, histology, and histomorphometry analysis, we demonstrated that 1,25D rescues glucose metabolism dysfunction and ameliorates bone loss in diabetic mice.
In vitro
, 1,25D alleviated primary osteoblast dysfunction and intracellular oxidative stress through reducing prolonged high-glucose-mediated excessive autophagy in primary osteoblasts, reflected by decreased protein level of Beclin1 and LC3. Of note, the autophagy activator rapamycin (RAP) ablated the positive effects of 1,25D in diabetic environment, leading to a marked increase in autolysosomes and autophagosomes, examined by mRFP-GFP-LC3 fluorescence double labeling. The excessive autophagy induced by high glucose was deleterious to proliferation and differentiation of primary osteoblasts. Additionally, biochemical studies identified that PI3K/Akt signaling could be activated by 1,25D, resulting in the inhibition of FoxO1. We confirmed that FoxO1 deficiency alleviated high-glucose-induced autophagy and improved biological functions of primary osteoblasts. Together, our results suggest that the PI3K/Akt/FoxO1 signaling pathway is involved in the osteoprotective effect of 1,25D by attenuating autophagy in diabetes, providing a novel insight for the prevention and treatment of diabetes-caused bone loss.
1ɑ,25‐dihydroxyvitamin D3 (1,25D) and fibroblast growth factor 23 (FGF23) play important roles in bone metabolism through mutual regulation. However, the underlying mechanism between 1,25D and FGF23 in diabetes‐induced bone metabolism disorders has not yet been elucidated. In this study, we investigated the effect of 1,25D on FGF23 under diabetic condition both in vitro and in vivo. The results showed that 1,25D down‐regulated the expression of FGF23 in osteoblast significantly though a dose‐dependent manner in vitro within high glucose environment. Western blot and immunofluorescence analysis indicated that 1,25D activated PI3K/Akt signalling through binding to vitamin D receptor (VDR), which inhibited the phosphorylation of the transcription factor Forkhead Box O1 (FOXO1). Decreased phosphorylation of FOXO1 down‐regulated the expression Dickkopf‐1 (DKK1), a well‐known inhibitor of Wnt signalling. In addition, we observed that 1,25D remarkably ameliorated osteogenic phenotypic markers such as Ocn and Runx2 and rescued diabetes‐induced bone loss in vivo. Our results suggested that 1,25D could promote osteogenesis though down‐regulating FOXO1/FGF23 in diabetes.
In the present work, macadamia protein was enzymatic hydrolyzed to produce peptides which had abundant antioxidant activities. The relative antioxidant capacity was investigated through some in vitro models such as scavenging activity of DPPH radical, scavenging of ABTS + radical and evaluation of the total antioxidant capacity assay. Macadamia protein was characterized by methods of DEAE cellulose cation-exchange chromatography and SDS-PAGE. Besides, method of price graph was used to compare the difference and to investigate the connection between the actual and ideal antioxidant value of the hydrolysates, aiming to reduce this difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.