An anomalously high chlorophyll-a (Chl-a) event (>2 mg/m 3 ) during June 2015 in the South Central Red Sea (17.5 • to 22 • N, 37 • to 42 • E) was observed using Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellite platforms. This differs from the low Chl-a values (<0.5 mg/m 3 ) usually encountered over the same region during summertime. To assess this anomaly and possible causes, we used a wide range of oceanographical and meteorological datasets, including Chl-a concentrations, sea surface temperature (SST), sea surface height (SSH), mixed layer depth (MLD), ocean current velocity and aerosol optical depth (AOD) obtained from different sensors and models. Findings confirmed this anomalous behavior in the spatial domain using Hovmöller data analysis techniques, while a time series analysis addressed monthly and daily variability. Our analysis suggests that a combination of factors controlling nutrient supply contributed to the anomalous phytoplankton growth. These factors include horizontal transfer of upwelling water through eddy circulation and possible mineral fertilization from atmospheric dust deposition. Coral reefs might have provided extra nutrient supply, yet this is out of the scope of our analysis. We thought that dust deposition from a coastal dust jet event in late June, coinciding with the phytoplankton blooms in the area under investigation, might have also contributed as shown by our AOD findings. However, a lag cross correlation showed a two-month lag between strong dust outbreak and the high Chl-a anomaly. The high Chl-a concentration at the edge of the eddy emphasizes the importance of horizontal advection in fertilizing oligotrophic (nutrient poor) Red Sea waters.
The Grand Ethiopian Renaissance Dam (GERD), formerly known as the Millennium Dam, has been filling at a fast rate. This project has created issues for the Nile Basin countries of Egypt, Sudan, and Ethiopia. The filling of GERD has an impact on the Nile Basin hydrology and specifically the water storages (lakes/reservoirs) and flow downstream. In this study, through the analysis of multi-source satellite imagery, we study the filling of the GERD reservoir. The time-series generated using Sentinel-1 SAR imagery displays the number of classified water pixels in the dam from early June 2017 to September 2020, indicating a contrasting trend in August and September 2020 for the upstream/downstream water bodies: upstream of the dam rises steeply, while downstream decreases. Our time-series analysis also shows the average monthly precipitation (derived using IMERG) in the Blue Nile Basin in Ethiopia has received an abnormally high amount of rainfall as well as a high amount of runoff (analyzed using GLDAS output). Simultaneously, the study also demonstrates the drying trend downstream at Lake Nasser in Southern Egypt before December 2020. From our results, we estimate that the volume of water at GERD has already increased by 3.584 billion cubic meters, which accounts for about 5.3% of its planned capacity (67.37 billion cubic meters) from 9 July–30 November 2020. Finally, we observed an increasing trend in GRACE anomalies for GERD, whereas, for the Lake Nasser, we observed a decreasing trend. In addition, our study discusses potential interactions between GERD and the rainfall and resulting flood in Sudan. Our study suggests that attention should be drawn to the connection between the GERD filling and potential drought in the downstream countries during the upcoming dry spells in the Blue Nile River Basin. This study provides an open-source technique using Google Earth Engine (GEE) to monitor the changes in water level during the filling of the GERD reservoir. GEE proves to be a powerful as well as an efficient way of analyzing computationally intensive SAR images.
In September 2015, the members of United Nations adopted the 2030 Agenda for Sustainable Development with universal applicability of 17 Sustainable Development Goals (SDGs) and 169 targets. The SDGs are consequential for the development of the countries in the Nile watershed, which are affected by water scarcity and experiencing rapid urbanization associated with population growth. Earth Observation (EO) has become an important tool to monitor the progress and implementation of specific SDG targets through its wide accessibility and global coverage. In addition, the advancement of algorithms and tools deployed in cloud computing platforms provide an equal opportunity to use EO for developing countries with limited technological capacity. This study applies EO and cloud computing in support of the SDG 6 “clean water and sanitation” and SDG 11 “sustainable cities and communities” in the seven Nile watershed countries through investigations of EO data related to indicators of water stress (Indicator 6.4.2) and urbanization and living conditions (Indicators 11.3.1 and 11.1.1), respectively. Multiple approaches including harmonic, time series and correlational analysis are used to assess and evaluate these indicators. In addition, a contemporary deep-learning classifier, fully convolution neural networks (FCNN), was trained to classify the percentage of impervious surface areas. The results show the spatial and temporal water recharge pattern among different regions in the Nile watershed, as well as the urbanization in selected cities of the region. It is noted that the classifier trained from the developed countries (i.e., the United States) is effective in identifying modern communities yet limited in monitoring rural and slum regions.
Air pollution is reported as one of the most severe environmental problems in the Middle East and North Africa (MENA) region. Remotely sensed data from newly available TROPOMI - TROPOspheric Monitoring Instrument on board Sentinel-5 Precursor, shows an annual mean of high-resolution maps of selected air quality indicators (NO2, CO, O3, and UVAI) of the MENA countries for the first time. The correlation analysis among the aforementioned indicators show the coherency of the air pollutants in urban areas. Multi-year data from the Aerosol Robotic Network (AERONET) stations from nine MENA countries are utilized here to study the aerosol optical depth (AOD) and Ångström exponent (AE) with other available observations. Additionally, a total of 65 different machine learning models of four categories, namely: linear regression, ensemble, decision tree, and deep neural network (DNN), were built from multiple data sources (MODIS, MISR, OMI, and MERRA-2) to predict the best usable AOD product as compared to AERONET data. DNN validates well against AERONET data and proves to be the best model to generate optimized aerosol products when the ground observations are insufficient. This approach can improve the knowledge of air pollutant variability and intensity in the MENA region for decision makers to operate proper mitigation strategies.
Heavy rainfall leads to severe flooding problems with catastrophic socio-economic impacts worldwide. Hydrologic forecasting models have been applied to provide alerts of extreme flood events and reduce damage, yet they are still subject to many uncertainties due to the complexity of hydrologic processes and errors in forecasted timing and intensity of the floods. This study demonstrates the efficacy of using eXtreme Gradient Boosting (XGBoost) as a state-of-the-art machine learning (ML) model to forecast gauge stage levels at a 5-min interval with various look-out time windows. A flood alert system (FAS) built upon the XGBoost models is evaluated by two historical flooding events for a flood-prone watershed in Houston, Texas. The predicted stage values from the FAS are compared with observed values with demonstrating good performance by statistical metrics (RMSE and KGE). This study further compares the performance from two scenarios with different input data settings of the FAS: (1) using the data from the gauges within the study area only and (2) including the data from additional gauges outside of the study area. The results suggest that models that use the gauge information within the study area only (Scenario 1) are sufficient and advantageous in terms of their accuracy in predicting the arrival times of the floods. One of the benefits of the FAS outlined in this study is that the XGBoost-based FAS can run in a continuous mode to automatically detect floods without requiring an external starting trigger to switch on as usually required by the conventional event-based FAS systems. This paper illustrates a data-driven FAS framework as a prototype that stakeholders can utilize solely based on their gauging information for local flood warning and mitigation practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.