Random screening provided no suitable lead structures in a search for novel inhibitors of the bacterial enzyme DNA gyrase. Therefore, an alternative approach had to be developed. Relying on the detailed 3D structural information of the targeted ATP binding site, our approach combines as key techniques (1) an in silico screening for potential low molecular weight inhibitors, (2) a biased high throughput DNA gyrase screen, (3) validation of the screening hits by biophysical methods, and (4) a 3D guided optimization process. When the in silico screening was performed, the initial data set containing 350 000 compounds could be reduced to 3000 molecules. Testing these 3000 selected compounds in the DNA gyrase assay provided 150 hits clustered in 14 classes. Seven classes could be validated as true, novel DNA gyrase inhibitors that act by binding to the ATP binding site located on subunit B: phenols, 2-amino-triazines, 4-amino-pyrimidines, 2-amino-pyrimidines, pyrrolopyrimidines, indazoles, and 2-hydroxymethyl-indoles. The 3D guided optimization provided highly potent DNA gyrase inhibitors, e. g., the 3,4-disubstituted indazole 23 being a 10 times more potent DNA gyrase inhibitor than novobiocin (3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.