The coronavirus disease 2019 (COVID-19) pandemic continues to spread aggressively worldwide, infecting more than 170 million people with confirmed cases, including more than 3 million deaths. This pandemic is increasingly exacerbating the burden on tropical and subtropical regions of the world due to the pre-existing dengue fever, which has become endemic for a longer period in the same region. Co-circulation dengue and COVID-19 cases have been found and confirmed in several countries. In this paper, a deterministic model for the coendemic of COVID-19 and dengue is proposed. The basic reproduction ratio is obtained, which is related to the four equilibria, disease-free, endemic-COVID-19, endemic-dengue, and coendemic equilibria. Stability analysis is done for the first three equilibria. Furthermore, a condition for coexistence equilibrium is obtained, which gives a condition for bifurcation analysis. Numerical simulations were carried out to obtain a stable limit-cycle resulting from two Hopf bifurcation points with dengue transmission rate and COVID-19 transmission rate as the bifurcation parameter, representing a stable periodic coexistence of dengue and COVID-19 transmission. We identify the period of limit cycle decreases after reaching the maximum value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.