Polycyclic Aromatic Hydrocarbons (PAHs) are a group of chemicals that are formed during the incomplete burning of coal, oil, gas, wood, garbage, or other organic substances, such as tobacco and charbroiled meat. There are more than 100 PAHs. PAHs generally occur as complex mixtures (for example, as part of products such as soot), not as single compounds. PAHs are found throughout the environment in the air, water, and soil. As part of its mandate, the Agency for Toxic Substances and Disease Registry (ATSDR) prepares toxicological profiles on hazardous chemicals, including PAHs (ATSDR, 1995), found at facilities on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) and which pose the most significant potential threat to human health, as determined by ATSDR and the Environmental Protection Agency (EPA). These profiles include information on health effects of chemicals from different routes and durations of exposure, their potential for exposure, regulations and advisories, and the adequacy of the existing database. Assessing the health effects of PAHs is a major challenge because environmental exposures to these chemicals are usually to complex mixtures of PAHs with other chemicals. The biological consequences of human exposure to mixtures of PAHs depend on the toxicity, carcinogenic and noncarcinogenic, of the individual components of the mixture, the types of interactions among them, and confounding factors that are not thoroughly understood. Also identified are components of exposure and health effects research needed on PAHs that will allow estimation of realistic human health risks posed by exposures to PAHs. The exposure assessment component of research should focus on (1) development of reliable analytical methods for the determination of bioavailable PAHs following ingestion, (2) estimation of bioavailable PAHs from environmental media, particularly the determination of particle-bound PAHs, (3) data on ambient levels of PAHs metabolites in tissues/fluids of control populations, and (4) the need for a critical evaluation of current levels of PAHs found in environmental media including data from hazardous waste sites. The health effects component should focus on obtaining information on (1) the health effects of mixtures of PAHs particularly their noncarcinogenic effects in humans, and (2) their toxicokinetics. This report provides excerpts from the toxicological profile of PAHs (ATSDR, 1995) that contains more detailed information.
The Agency for Toxic Substances and Disease Registry (ATSDR) is a federal public health agency that investigates and strives to prevent human health problems produced by exposure to toxic chemicals and their mixtures in the environment. Most human exposures involving toxic chemicals or mixtures are thought to originate from environmental and occupational sources; however, concurrent exposures are also likely from other sources, such as prescription and nonprescription drugs, indoor air pollutants, alcohol, and tobacco smoke. Thus, in evaluating the potential hazard following exposure to environmental mixtures, ATSDR not only considers the inherent joint toxicity of the mixture but also the influence of environmental, demographic, occupational, and lifestyle factors. To foster these goals, ATSDR has pursued a Mixtures Research and Assessment Program that consists of three component efforts: trend analysis, joint toxicity assessment, and experimental testing. Through trend analysis, ATSDR sets priorities for environmental mixtures of concern for which joint toxicity assessments are conducted as needed. If data are not available to conduct appropriate assessments, a research agenda is pursued through established extramural mechanisms. Ultimately, the data generated are used to support ATSDR's work at sites involving exposure to chemical mixtures. This pragmatic approach allows testable hypotheses or research needs to be identified and resolved and enhances our understanding of the mechanisms of joint toxicity. Several collaborative and cooperative efforts with national and international organizations such as the Toxicology and Nutrition Office, the Netherlands, and the Department of Energy are being pursued as part of these activities. ATSDR also develops guidance manuals to consistently and accurately apply current methodologies for the joint toxicity assessment of chemicals. Further, expert panels often are assembled to resolve outstanding scientific issues or obtain expert advice on pertinent issues. Recently, the need for studies on chemical mixtures has been proposed as one of the six priority areas the agency identified in its agenda for public health environmental research. This has been reinforced through the agency's close work with communities whose leaders have spoken passionately about their concern for information on exposures to chemical mixtures. The five other priority research areas the agency identified are exposure, susceptible populations, communities and tribal involvement, evaluation/surveillance of health effects, and health promotion/prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.