Abstract. A new cloud identification and classification algorithm named CIC is presented. CIC is a machine learning algorithm, based on principal component analysis, able to perform a cloud detection and scene classification using a univariate distribution of a similarity index that defines the level of closeness between the analysed spectra and the elements of each training dataset. CIC is tested on a widespread synthetic dataset of high spectral resolution radiances in the far- and mid-infrared part of the spectrum, simulating measurements from the Fast Track 9 mission FORUM (Far-Infrared Outgoing Radiation Understanding and Monitoring), competing for the ESA Earth Explorer programme, which is currently (2018 and 2019) undergoing industrial and scientific Phase A studies. Simulated spectra are representatives of many diverse climatic areas, ranging from the tropical to polar regions. Application of the algorithm to the synthetic dataset provides high scores for clear or cloud identification, especially when optimisation processes are performed. One of the main results consists of pointing out the high information content of spectral radiance in the far-infrared region of the electromagnetic spectrum to identify cloudy scenes, specifically thin cirrus clouds. In particular, it is shown that hit scores for clear and cloudy spectra increase from about 70 % to 90 % when far-infrared channels are accounted for in the classification of the synthetic dataset for tropical regions.
Ambient temperature may lead to decompensation of cardiovascular diseases and deaths by acute myocardial infarction (AMI). Little is known about this relationship in South American countries located in regions of a hot climate. This study aims to investigate the effects of ambient temperature on mortality due to AMI in six Brazilian micro-regions, which present different climates. We analyzed daily records of deaths by AMI between 1996 and 2013. We estimated the accumulate relative and attributable risks with lags of up to 14 days, using distributed non-linear lag model. Micro-regions that were closest to the equator did not show an association between temperature and mortality. The lowest risk temperatures varied between 22 °C and 28 °C, in the Southern region of Brazil and the Midwest region, respectively. Low temperatures associated with the highest mortality risk were observed in the same areas, varying between 5 °C and 15 °C. The number of deaths attributed to cold temperatures varied from 176/year in Brasilia to 661/year in São Paulo and those deaths attributed to hot temperatures in Rio de Janeiro amounted to 115/year. We showed the relative risk and the attributable risk of warmer and colder days in tropical regions. The estimate of the number of deaths due to climate, varying according to each area, is a way of bringing information to those responsible for health policies based on easily-understood measurements.
Abstract. Statistics on the occurrence of clear skies, ice clouds, and mixed-phase clouds over Concordia Station, in the Antarctic Plateau, are provided for multiple timescales and analyzed in relation to simultaneous meteorological parameters measured at the surface. Results are obtained by applying a machine learning cloud identification and classification (CIC) code to 4 years of measurements between 2012–2015 of downwelling high-spectral-resolution radiances, measured by the Radiation Explorer in the Far Infrared – Prototype for Applications and Development (REFIR-PAD) spectroradiometer. The CIC algorithm is optimized for Antarctic sky conditions and results in a total hit rate of almost 0.98, where 1.0 is a perfect score, for the identification of the clear-sky, ice cloud, and mixed-phase cloud classes. Scene truth is provided by lidar measurements that are concurrent with REFIR-PAD. The CIC approach demonstrates the key role of far-infrared spectral measurements for clear–cloud discrimination and for cloud phase classification. Mean annual occurrences are 72.3 %, 24.9 %, and 2.7 % for clear sky, ice clouds, and mixed-phase clouds, respectively, with an inter-annual variability of a few percent. The seasonal occurrence of clear sky shows a minimum in winter (66.8 %) and maxima (75 %–76 %) during intermediate seasons. In winter the mean surface temperature is about 9 ∘C colder in clear conditions than when ice clouds are present. Mixed-phase clouds are observed only in the warm season; in summer they amount to more than one-third of total observed clouds. Their occurrence is correlated with warmer surface temperatures. In the austral summer, the mean surface air temperature is about 5 ∘C warmer when clouds are present than in clear-sky conditions. This difference is larger during the night than in daylight hours, likely due to increased solar warming. Monthly mean results are compared to cloud occurrence and fraction derived from gridded (Level 3) satellite products from both passive and active sensors. The differences observed among the considered products and the CIC results are analyzed in terms of footprint sizes and sensors' sensitivities to cloud optical and geometrical features. The comparison highlights the ability of the CIC–REFIR-PAD synergy to identify multiple cloud conditions and study their variability at different timescales.
Three key elements are the drivers of Aedes-borne disease: mosquito infestation, virus circulating, and susceptible human population. However, information on these aspects is not easily available in low- and middle-income countries. We analysed data on factors that influence one or more of those elements to study the first chikungunya epidemic in Rio de Janeiro city in 2016. Using spatio-temporal models, under the Bayesian framework, we estimated the association of those factors with chikungunya reported cases by neighbourhood and week. To estimate the minimum temperature effect in a non-linear fashion, we used a transfer function considering an instantaneous effect and propagation of a proportion of such effect to future times. The sociodevelopment index and the proportion of green areas (areas with agriculture, swamps and shoals, tree and shrub cover, and woody-grass cover) were included in the model with time-varying coefficients, allowing us to explore how their associations with the number of cases change throughout the epidemic. There were 13627 chikungunya cases in the study period. The sociodevelopment index presented the strongest association, inversely related to the risk of cases. Such association was more pronounced in the first weeks, indicating that socioeconomically vulnerable neighbourhoods were affected first and hardest by the epidemic. The proportion of green areas effect was null for most weeks. The temperature was directly associated with the risk of chikungunya for most neighbourhoods, with different decaying patterns. The temperature effect persisted longer where the epidemic was concentrated. In such locations, interventions should be designed to be continuous and to work in the long term. We observed that the role of the covariates changes over time. Therefore, time-varying coefficients should be widely incorporated when modelling Aedes-borne diseases. Our model contributed to the understanding of the spatio-temporal dynamics of an urban Aedes-borne disease introduction in a tropical metropolitan city.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.