Insensitive high explosive materials (IHE) such as 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN) are increasingly being used in formulations of insensitive munitions alongside 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). Load, assembly and packing (LAP) facilities that process munitions produce wastewater contaminated with IHE which must be treated before discharge. Some facilities can produce as much as 90,000 L of contaminated wastewater per day. In this review, methods of wastewater treatment are assessed in terms of their strengths, weaknesses, opportunities and threats for their use in production of IHE munitions including their limitations and how they could be applied to industrial scale LAP facilities. Adsorption is identified as a suitable treatment method, however the high solubility of NTO, up to 16.6 g.L À1 which is 180 times higher that of TNT, has the potential to exceed the adsorptive capacity of carbon adsorption systems. The key properties of the adsorptive materials along the selection of adsorption models are highlighted and recommendations on how the limitations of carbon adsorption systems for IHE wastewater can be overcome are offered, including the modification of carbons to increase adsorptive capacity or reduce costs.
The environmental risks from explosive manufacturing and testing activities are usually evaluated using a qualitative process such as environmental impact prioritisation as recommended by legislation and guidance. However, standard environmental management system (EMS) guidance rarely provides detailed information on how to objectively assess the significance of the environmental impacts based on a rational scientific evidence. Quantitative exposure and ecotoxicity assessments are frequently used in combination with environmental threshold limit guidelines, but these omit important environmental impacts such as physical damage to land, nuisance and contribution to climate change. These impacts are particularly relevant to the explosives industry where noise nuisance and physical damage are given high priority. In addition, contamination from explosive compositions may comprise mixtures of multiple legacy and new generation explosives such as 1,3,5-trinitro-1,3,5-triazinane (RDX), 2,4,6-trinitrotoluene (TNT), 5nitro-1,2,4-triazol-3-one (NTO), 2,4-dinitroanisole (DNAN) and nitroguandine (NQ), which may have combinedcombined impacts not captured by conventional eco-toxicity assessments. Further, threshold limits for energetic materials in soil and water have not been established for most nations. Additionally, in the explosive industry wider concerns such as legislative compliance and stakeholder concerns may help to provide a more broadly applicable assessment of environmental impact. Therefore in this study a novel decision framework was developed to integrate empirical
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.