Devoid of all known canonical actin-binding proteins, the prevalent parasite Giardia lamblia uses an alternative mechanism for cytokinesis. Unique aspects of this mechanism can potentially be leveraged for therapeutic development. Here, live-cell imaging methods were developed for Giardia to establish division kinetics and the core division machinery. Surprisingly, Giardia cytokinesis occurred with a median time that is ∼60 times faster than mammalian cells. In contrast to cells that use a contractile ring, actin was not concentrated in the furrow and was not directly required for furrow progression. Live-cell imaging and morpholino depletion of axonemal Paralyzed Flagella 16 indicated that flagella-based forces initiated daughter cell separation and provided a source for membrane tension. Inhibition of membrane partitioning blocked furrow progression, indicating a requirement for membrane trafficking to support furrow advancement. Rab11 was found to load onto the intracytoplasmic axonemes late in mitosis and to accumulate near the ends of nascent axonemes. These developing axonemes were positioned to coordinate trafficking into the furrow and mark the center of the cell in lieu of a midbody/phragmoplast. We show that flagella motility, Rab11, and actin coordination are necessary for proper abscission. Organisms representing three of the five eukaryotic supergroups lack myosin II of the actomyosin contractile ring. These results support an emerging view that flagella play a central role in cell division among protists that lack myosin II and additionally implicate the broad use of membrane tension as a mechanism to drive abscission.
Fatty acid analysis is essential to a broad range of applications including those associated with the nascent algal biofuel and algal bioproduct industries. Current fatty acid profiling methods require lengthy, sequential extraction and transesterification steps necessitating significant quantities of analyte. We report the development of a rapid, microscale, single-step, in situ protocol for GC–MS lipid analysis that requires only 250 μg dry mass per sample. We furthermore demonstrate the broad applications of this technique by profiling the fatty acids of several algal species, small aquatic organisms, insects and terrestrial plant material. When combined with fluorescent techniques utilizing the BODIPY dye family and flow cytometry, this micro-assay serves as a powerful tool for analyzing fatty acids in laboratory and field collected samples, for high-throughput screening, and for crop assessment. Additionally, the high sensitivity of the technique allows for population analyses across a wide variety of taxa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.