A series of soluble, fully aromatic polyetherimides were prepared as candidate materials for optical coating applications. Most of the new polymer coatings possessed high transparency in the optical and near-infrared spectral regions at thicknesses ranging from 1 to 10 microns. The refractive indices obtained ranged from 1.60 to 1.80 at visible wavelengths, with the highest values generally being obtained near 400 nm followed by a gentle decline as wavelength increased to 700 nm and beyond. The refractive index values could be controlled by varying the dianhydride and diamine composition. All of the polyimides showed good thermal stability to 400°C and displayed glass transition temperatures above 220°C, making them excellent candidates for device applications where increased refractive index and high optical clarity are desired. The paper will discuss the preparation and physical and optical properties of the polymers and compare them to other high index coating systems.
No abstract
Articles you may be interested inSingle-chamber plasma enhanced chemical vapor deposition of transparent organic/inorganic multilayer barrier coating at low temperature Flexible fluorocarbon wire coatings by pulsed plasma enhanced chemical vapor deposition A process of depositing thin organic polymeric coatings on electronic substrates by plasma enhanced chemical vapor deposition ͑PECVD͒ has been developed. We have designed halogenated compounds with PECVD reactive functionality attached to optically active moieties. Compounds have been screened selectively to lower the dielectric constant and enhance plasma polymerization efficiency. The chemical, optical, and mechanical properties of the deposited films such as film uniformity, film defectivity, film solubility, resist compatibility, conformality, adhesion to semiconductor substrates, refractive index, optical density, and photolithographic behavior have been studied. Plasma polymerized materials exhibit high sensitivity, excellent resolution, and good process latitude. PECVD provides a completely dry deposition process for wafer coating. The coatings possess high optical density at 193 nm.
We are developing a set of dyed red, green, and blue color filter coatings for the fabrication of high resolution CCD and CMOS image sensor arrays. The resists contain photosensitive polymer binders and various curing agents, soluble organic dyes, and solvents. The new dyed photoresists are sensitive to i-line radiation, primarily at 365 nm, and are negative-working, requiring less than 500 mJ of exposure energy for patterning. The coatings are developed in standard Tetramethylammonium Hydroxide (TMAH) developers. Many dyes were examined in order to achieve the desired spectral properties as well as the meet the solvent solubility and thermal stability requirements. Computer modeling was utilized to determine the correct proportions of dye(s) in each resist, after which the modeling results were verified by actual formulation and testing. Thermal stability of the dyes was determined using isothermal. Thermogravimetric Analysis (TGA) at 200 o C for 30 minutes. The dyes were evaluated in both traditional (free radical) and novel polymer systems to see if adequate sensitivity, resolution, and feature quality could be obtained. The studies showed that traditional free radical-based photochemistries are marginal at best for high resolution (1-2 micron) applications. To overcome this limitation, a new polymer system having photodimerizable functional units and acid functional groups was developed to impart photosensitivity and developer solubility, respectively. This system, which does not use free radical-initiated photopolymerization as a mechanism for patterning, shows low exposure dose requirements and is capable of resolving features less than 2 micron in size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.