The list ofdesired properties for a spin-on 193-nm BARC steadily increases. In response, crosslinkable polymers from different chemical families than the conventional acrylics and vinyls are being studied for applicability in preparing improved thermosetting BARCs. Alternate polymer platforms discussed in this paper include polyethers, polyesters, polyurethanes, and polysaccharides. A BARC that uses a blend or mixture of commercially-available polymers for the binder is highlighted and the product's performance is described. The BARC parameters that are discussed include film properties, flash point, optical data and reflectivity, solution and spin-bowl compatibility, plasma etching rate, resist profile, conformality, and metals content. Based on the test results outlined in this paper, the polymer blend BARC J1M2218-56 is expected to advance towards commercialization.
Two organic, spin-on BARCs are in the small scale manufacturing phase -with the goal being a 193-nm product optimized for commercialization. Chemistries of the BARCs are shown in this paper and performance of the two products relative to industry accepted needs is discussed. The thermoset BARCs, EXP98O9OB and EXP99001D, are prepared from hydroxyfunctional, dye-aUached acrylic polymers by adding an aminoplast and suffonic acid catalyst. With select 193-nm resists, the BARCs give resolution of L/S pairs down to 0. 12 pm. Plasma etch rates of both BARCs are comparable to those of 193-nm photoresists. Other BARC performance parameters that are discussed for the two products include: film and optical properties, conformality, simulated reflectance curves, spin-bowl compatibility, metals content, and defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.