In this research, we focus on the usage of adversarial sampling to test for the fairness in the prediction of deep neural network model across different classes of image in a given dataset. While several framework had been proposed to ensure robustness of machine learning model against adversarial attack, some of which includes adversarial training algorithm. There is still the pitfall that adversarial training algorithm tends to cause disparity in accuracy and robustness among different group. Our research is aimed at using adversarial sampling to test for fairness in the prediction of deep neural network model across different classes or categories of image in a given dataset. We successfully demonstrated a new method of ensuring fairness across various group of input in deep neural network classifier. We trained our neural network model on the original image, and without training our model on the perturbed or attacked image.When we feed the adversarial samplings to our model, it was able to predict the original category/ class of the image the adversarial sample belongs to. We also introduced and used the separation of concern concept from software engineering whereby there is an additional standalone filter layer that filters perturbed image by heavily removing the noise or attack before automatically passing it to the network for classification, we were able to have accuracy of 93.3%. Cifar-10 dataset have ten categories of dataset, and so, in order to account for fairness, we applied our hypothesis across each categories of dataset and were able to get a consistent result and accuracy.
The modern industrial environment is equipping myriads of smart manufacturing machines where the state of each device can be monitored continuously. Such monitoring can help identify possible future failures and develop a cost-effective maintenance plan. However, it is a daunting task to perform early detection with low false positives and negatives from the huge volume of collected data. This requires developing a holistic machine learning framework to address the issues in condition monitoring of high priority components and develop efficient techniques to detect anomalies that can detect and possibly localize the faulty components. This paper presents a comparative analysis of recent machine learning approaches for robust, costeffective anomaly detection in cyber-physical systems. While detection has been extensively studied, very few researchers have analyzed the localization of the anomalies. We show that supervised learning outperforms unsupervised algorithms. For supervised cases, we achieve near-perfect accuracy of 98% (specifically for tree-based algorithms). In contrast, the best-case accuracy in the unsupervised cases was 63%-the area under the receiver operating characteristic curve (AUC) exhibits similar outcomes as an additional metric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.