Wilson’s disease (WD) is an autosomal recessive disease that presents mainly with hepatic, neurological, and psychiatric manifestations. Neurological manifestations have been described in the past. Nevertheless, the pathophysiology and the clinical relevance of these manifestations have not been described in great detail in the medical literature. We aim to consolidate the knowledge about the neurological manifestations of WD and present the pathophysiology of each neurological manifestation of the disease. We will give a brief definition, the provenance, and the pathophysiology of the neurological conditions. We collected data from the National Library of Medicine (PubMed) using regular keywords and medical subject headings. Studies were selected applying the following inclusion/exclusion criteria: (1) studies that used exclusively human subjects, (2) papers published in English, and (3) papers from 1990 onward. The exclusion criteria were (1) studies that used animals, (2) papers not published in English, and (3) papers published before 1990. Additional studies were included via reference lists of identified papers and related articles featured in PubMed and Google Scholar. Copper toxicity is the principal factor for brain degeneration seen in WD. Parkinsonism seen in WD has been associated with a nigrostriatal dopaminergic deficit. Resting tremor may have the same pathophysiology as parkinsonism. Action tremor is related to an accumulation of copper in the cerebellum's vermis and hemispheres. At the same time, essential tremor can be explained due to affection of the dentate nucleus. Choreoathetosis is produced due to increased activity of the direct pathway. We did not find specifically associated pathophysiology related to dysarthria. We assume that multiple parts of the brain are involved in that problem. Putamen nucleus damage is the leading cause that explains dystonia seen in WD along with the globus palidus. We did not find a specific localization for seizures in WD, but the pathology seems to be related to decreased levels of B6 and direct toxicity of copper on the brain.
Multiple system atrophy (MSA) is a rare, progressive, fatal, neurodegenerative disorder. There are two main types: the parkinsonian type (MSA-P) and cerebellar type (MSA-C). The disease usually presents with genitourinary dysfunction, orthostatic hypotension, and rapid eye movement (REM) sleep behavior disorder. Patients rapidly develop balance, speech, and coordination abnormalities. We present a review of the clinical picture and the actualized treatment modalities of the MSA cerebellar type. For the study methods, a PubMed search was done using the following medical subject headings (MeSH) terms: “multiple system atrophy/therapy". Inclusion criteria included studies in English, full papers, human studies, and publications in the last 30 years. Case reports and series were excluded. A total of 157 papers were extracted after applying the inclusion and exclusion criteria, and 41 papers were included for the discussion of this review. This review underlines the therapeutic strategies as well as the clinical picture of multiple system atrophy, and how MSA-C and MSA-P differ from each other. We discussed this review in four topics: ataxia, autonomic dysfunction (neurogenic orthostatic hypotension and urinary disorders), parkinsonism, and REM sleep disorder. In conclusion, the treatment of MSA-C is mainly symptomatic; there are not many studies on MSA-C. The ataxic component and fewer parkinsonian symptoms are the main difference of MSA-C as opposed to MSA-P.
Subarachnoid hemorrhage (SAH) is a severe form of stroke that can cause unpredictable and diffuse cerebral damage, which is di cult to detect until it becomes irreversible. Therefore, there is a need for a reliable method to identify dysfunctional regions and initiate treatment before permanent damage occurs. Neurobehavioral assessments have been suggested as a possible tool to detect and approximately localize dysfunctional cerebral regions. In this study, we hypothesized that a neurobehavioral assessment battery could be a sensitive and speci c early warning for damage in discrete cerebral regions following SAH. To test this hypothesis, a behavioral battery was employed at multiple time points after SAH induced via an endovascular perforation, and brain damage was con rmed via postmortem histopathological analysis. Our results demonstrate that impairment of sensorimotor function accurately predict damage in the cerebral cortex (AUC: 0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.