Mycobacterium abscessus is an important infectious agent highly associated with drug resistance and treatment failure. We investigated the drug resistance situation of M. abscessus in Northeast Thailand and the possible genetic basis for this. Sixty-eight M. abscessus clinical isolates were obtained from 26 patients at Srinagarind Hospital during 2012–2016. Drug susceptibility tests and sequencing of erm(41), rrl and rrs genes were performed. Mycobacterium abscessus was resistant to 11/15 antibiotics (nearly 100% resistance in each case). Partial susceptibility to four antibiotics was found (amikacin, tigecycline, clarithromycin and linezolid). Non-massiliense subspecies were significantly associated with clarithromycin resistance (p<0.0001) whereas massiliense subspecies were associated with tigecycline resistance (p = 0.028). Inducible clarithromycin resistance was seen in 22/68 (32.35%) isolates: 21 of these isolates (95.45%) belonged to non-massiliense subspecies and resistance was explicable by the T28C mutation in erm(41). Inducible clarithromycin resistance was found in one isolate of the massiliense subspecies. Acquired clarithromycin resistance explicable by the A2271G/C mutation of rrl was seen in only 7/16 (43.75%) of strains. Inducible and acquired resistance mechanisms can be interchangeable during the course of infection. Rrs mutations were not associated with amikacin resistance in our study. Antibiotic resistance in subspecies of M. abscessus was reported from Northeast Thailand. Known resistance-associated mutations cannot explain all of the resistance patterns observed.
Use of EUCAST versus CLSI breakpoints had profound differences for cefaclor, cefuroxime and ofloxacin, with EUCAST showing lower susceptibility. There was considerable variability in susceptibility among countries in the same region. Thus, continued surveillance is necessary to track future changes in antibiotic resistance.
Drug resistance (DR) remains a major challenge for tuberculosis (TB) control. Whole-genome sequencing (WGS) provides the highest genetic resolution for genotypic drug-susceptibility tests (DST). We compared DST profiles of 60 Mycobacterium tuberculosis isolates which were drug resistant according to agar proportion tests (one poly DR-TB, 34 multidrug-resistant TB and 25 extensively drug-resistant TB). We additionally performed minimum inhibitory concentration (MIC) tests using Sensititre MYCOTBI plates (MYCOTB) and a WGS-based DST. Agreement between WGS-based DST and MYCOTB was high for all drugs except ethambutol (65%) and ethionamide (62%). Isolates harboring the -15 c/t inhA promoter mutation had a significantly lower MIC for isoniazid than did isolates with the katG Ser315Thr mutation (p < 0.001). Similar patterns were seen for ethambutol (embB Gly406Asp vs. embB Met306Ile), streptomycin (gid Gly73Ala vs. rpsL Lys43Arg), moxifloxacin (gyrA Ala90Val vs. gyrA Asp94Gly) and rifabutin (rpoB Asp435Phe/Tyr/Val vs. rpoB Ser450Leu). For genotypic heteroresistance, isolates with lower proportion of mapped read tended to has lower MIC of anti-TB drugs than those with higher proportion. These results emphasize the high applicability of WGS for determination of DR-TB and the association of particular mutations with MIC levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.