This work is published as a conference paper [1] at IEEE Humanoids 2018.We consider the problem of grasping in clutter. While there have been motion planners developed to address this problem in recent years, these planners are mostly tailored for openloop execution. Open-loop execution in this domain, however, is likely to fail, since it is not possible to model the dynamics of the multi-body multi-contact physical system with enough accuracy, neither is it reasonable to expect robots to know the exact physical properties of objects, such as frictional, inertial, and geometrical. Therefore, we propose an online re-planning approach for grasping through clutter. The main challenge is the long planning times this domain requires, which makes fast re-planning and fluent execution difficult to realize. In order to address this, we propose an easily parallelizable stochastic trajectory optimization based algorithm that generates a sequence of optimal controls. We show that by running this optimizer only for a small number of iterations, it is possible to perform real time re-planning cycles to achieve reactive manipulation under clutter and uncertainty.
We address the manipulation task of retrieving a target object from a cluttered shelf. When the target object is hidden, the robot must search through the clutter for retrieving it. Solving this task requires reasoning over the likely locations of the target object. It also requires physics reasoning over multi-object interactions and future occlusions. In this work, we present a data-driven hybrid planner for generating occlusionaware actions in closed-loop. The hybrid planner explores likely locations of the occluded target object as predicted by a learned distribution from the observation stream. The search is guided by a heuristic trained with reinforcement learning to act on observations with occlusions. We evaluate our approach in different simulation and real-world settings (video available on https://youtu.be/dY7YQ3LUVQg). The results validate that our approach can search and retrieve a target object in near real time in the real world while only being trained in simulation.
We propose a planning and control approach to physics-based manipulation. The key feature of the algorithm is that it can adapt to the accuracy requirements of a task, by slowing down and generating "careful" motion when the task requires high accuracy, and by speeding up and moving fast when the task tolerates inaccuracy. We formulate the problem as an MDP with action-dependent stochasticity and propose an approximate online solution to it. We use a trajectory optimizer with a deterministic model to suggest promising actions to the MDP, to reduce computation time spent on evaluating different actions. We conducted experiments in simulation and on a real robotic system. Our results show that with a task-adaptive planning and control approach, a robot can choose fast or slow actions depending on the task accuracy and uncertainty level. The robot makes these decisions online and is able to maintain high success rates while completing manipulation tasks as fast as possible.
Humans, in comparison to robots, are remarkably adept at reaching for objects in cluttered environments. The best existing robot planners are based on random sampling in configuration space-which becomes excessively highdimensional with a large number of objects. Consequently, most of these planners suffer from limited object manipulation. We address this problem by learning high-level manipulation planning skills from humans and transfer these skills to robot planners. We used virtual reality to generate data from human participants whilst they reached for objects on a cluttered table top. From this, we devised a qualitative representation of the task space to abstract human decisions, irrespective of the number of objects in the way. Based on this representation, human demonstrations were segmented and used to train decision classifiers. Using these classifiers, our planner produced a list of waypoints in task space. These waypoints provide a high-level plan, which can be transferred to an arbitrary robot model and used to initialize a local trajectory optimiser. We evaluated this approach through testing on unseen human VR data, a physics-based robot simulation and real robot experiments. We find that this human-like planner outperforms a state-of-the-art standard trajectory optimisation algorithm and is able to generate effective strategies for rapid planning, irrespective of the number of objects in a cluttered environment. Our dataset and source code are publicly available 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.