Subsurface microstructural alterations are formed in the later stages of rolling contact fatigue (RCF) under high contact pressure. The subsurface changes observed as a dark contrast under optical microscopy are classified as Dark Etching Regions (DERs). Despite the fact that DERs have been presented for several decades, the understanding of its development and growth is yet to comprehend. Current research employed a modified high-speed microprocessor rotary tribometer to conduct systematic RCF study under accelerated testing conditions with variable temperatures and contact pressures. Comprehensive RCF data has been acquired, analysed and is reported for the very first time with ball-on-ball point contact loading conditions. The subsurface microscopic investigations have shown the ongoing progression and development of DER extent and are reported to be associated with the accumulation of plasticity during RCF. The comparison of the DER with the responsible stress components have revealed that DER formation is more closely related to the von Mises stresses when superposed with residual stresses. The experimentally observed area fraction of dark etching zones has been evaluated in terms of DER% and compared with the dislocation assisted carbon diffusion model for DER formation. The overprediction of the numerical model in comparison with the presented results in current research manifests its limitations which can be improved with the incorporation of cyclic plasticity governed by evolved von Mises stresses. The evaluated DER results are further presented as a 3D DER% maps incorporating the combined effects of contact stress, temperature and rolling cycles simultaneously which provides a comprehensive understanding of RCF from a microstructural point of view and thus can be used as guidelines for DER formation models.
Abstract:In rare cases rolling bearings fail by WEC (white etching crack) damage before reaching their calculated rating life, if so called additional loads are applied on the bearing in addition to the normal Hertzian stress (p Hz ). A number of additional loads have been identified by means of tests with rolling bearings. These can be small direct currents as a result of electrostatic charge or large alternating currents from inverter-fed drives that unintentionally flow through the bearing. WEC damages can also be initiated by a pure mechanical additional load which is dependent on factors including the bearing kinematics but also on the dynamics of the drive train. The current state of knowledge on this subject is presented and taken as the basis for developing a hypothesis on the WEC damage mechanism. If load situations critical for WEC cannot be avoided, the risk of WEC can be considerably reduced by the selection of suitable materials and coatings as well as, in some cases, of suitable lubricants.
Rolling bearing elements develop structural changes during rolling contact fatigue (RCF) along with the non-proportional stress histories, evolved residual stresses and extensive work hardening. Considerable work has been reported in the past few decades to model bearing material hardening response under RCF; however, they are mainly based on torsion testing or uniaxial compression testing data. An effort has been made here to model the RCF loading on a standard AISI 52100 bearing steel with the help of a 3D Finite Element Model (FEM) which employs a semi-empirical approach to mimic the material hardening response evolved during cyclic loadings. Standard bearing balls were tested in a rotary tribometer where pure rolling cycles were simulated in a 4-ball configuration. The localised material properties were derived from post-experimental subsurface analysis with the help of nanoindentation in conjunction with the expanding cavity model. These constitutive properties were used as input cyclic hardening parameters for FEM. Simulation results have revealed that the simplistic power-law hardening model based on monotonic compression test underpredicts the residual generation, whereas the semi-empirical approach employed in current study corroborated well with the experimental findings from current research work as well as literature cited. The presence of high compressive residual stresses, evolved over millions of RCF cycles, showed a significant reduction of maximum Mises stress, predicting significant improvement in fatigue life. Moreover, the predicted evolved flow stresses are comparable with the progression of subsurface structural changes and be extended to develop numerical models for microstructural alterations. Graphic Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.