We propose a statistical dialogue analysis model to determine discourse structures as well as speech acts using maximum entropy model. The model can automatically acquire probabilistic discourse knowledge from a discourse tagged corpus to resolve ambiguities. We propose the idea of tagging discourse segment boundaries to represent the structural information of discourse. Using this representation we can effectively combine speech act analysis and discourse structure analysis in one framework.
Won Seug CHOI †a) , Harksoo KIM †b) , and Jungyun SEO † †c) , Members SUMMARY Analysis of speech acts and discourse structures is essential to a dialogue understanding system because speech acts and discourse structures are closely tied with the speaker's intention. However, it has been difficult to infer a speech act and a discourse structure from a surface utterance because they highly depend on the context of the utterance. We propose a statistical dialogue analysis model to determine discourse structures as well as speech acts using a maximum entropy model. The model can automatically acquire probabilistic discourse knowledge from an annotated dialogue corpus. Moreover, the model can analyze speech acts and discourse structures in one framework. In the experiment, the model showed better performance than other previous works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.