New innovative Industrialised Building System (IBS) has been implemented in Malaysia. It is a sustainable approach, innovative technique and implements repetitive manufacturing using green materials. This paper presents one of the standard tests to check the design and strength of IBS components via an experimental flexural test and then verify the finite element analysis. One IBS frame was set-up, tested with two points of monotonic vertical loading, and analysed by Abaqus 6.12 software. The structural performance in nonlinear state was evaluated in loaddisplacement relationship of beam, crack pattern, mode of failure, and stresses at concrete and connection deformation to guide the further components inspection.
The paper presents a pseudo-dynamic cyclic load test to evaluate the structural performance of innovative prefabricated hybrid Industrialised Building System (IBS) subjected to earthquake-induced ground motions. Two beams, three columns and six wall panels with scale of 1:5 were casted using concrete grade 30. Steel bars with diameters of 6 mm and 1.5 mm were used as main reinforcement and links, respectively. The frame was set-up and tested in two reversal directions of cyclic lateral loads in the structural laboratory. Eight Linear Variable Displacement Transducers (LVDTs) and seven strain gauges were instrumented in the model to record deflections and strains. This experiment was conducted in displacement-controlled mode. Four cycles of loads were applied corresponding to the initial targeted lateral displacement to obtain hysteresis curve. The structural performance was assessed using structural seismic demand parameters such as story displacement, displacement ductility and energy dissipation. Three structural performance levels that were Immediate Occupancy (IO), Life Safety (LS) and Collapse Prevention (CP) were assessed with compliance of FEMA 356. Structural behaviour, localised stressed and failed components were checked and recorded. The experimental results were presented in load-displacement of the system, mapped crack patterns, and development of capacity curve. Damage ranking were proposed based on degree of damage of scaled 1:5 of SMART IBS frame.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.