Survival of free-living and symbiotic dinoflagellates (Symbiodinium spp.) in coral reefs is critical to the maintenance of a healthy coral community. Most coral reefs exist in oligotrophic waters, and their survival strategy in such nutrient-depleted waters remains largely unknown. In this study, we found that two strains of Symbiodinium spp. cultured from the environment and acquired from the tissues of the coral Alveopora japonica had the ability to feed heterotrophically. Symbiodinium spp. fed on heterotrophic bacteria, cyanobacteria (Synechococcus spp.), and small microalgae in both nutrient-replete and nutrient-depleted conditions. Cultured free-living Symbiodinium spp. displayed no autotrophic growth under nitrogen-depleted conditions, but grew when provided with prey. Our results indicate that Symbiodinium spp.'s mixotrophic activity greatly increases their chance of survival and their population growth under nitrogen-depleted conditions, which tend to prevail in coral habitats. In particular, free-living Symbiodinium cells acquired considerable nitrogen from algal prey, comparable to or greater than the direct uptake of ammonium, nitrate, nitrite, or urea. In addition, freeliving Symbiodinium spp. can be a sink for planktonic cyanobacteria (Synechococcus spp.) and remove substantial portions of Synechococcus populations from coral reef waters. Our discovery of Symbiodinium's feeding alters our conventional views of the survival strategies of photosynthetic Symbiodinium and corals. mixotrophy | zooxanthella | coral bleaching | food web | Heterosigma
We first reported here that the harmful alga Cochlodinium polykrikoides, which had been previously known as an autotrophic dinoflagellate, was a mixotrophic species. We investigated the kinds of prey species and the effects of the prey concentration on the growth and ingestion rates of C. polykrikoides when feeding on an unidentified cryptophyte species (Equivalent Spherical Diameter, ESD = 5.6 microm). We also calculated grazing coefficients by combining field data on abundances of C. polykrikoides and co-occurring cryptophytes with laboratory data on ingestion rates obtained in the present study. Cocholdinium polykrikoides fed on prey cells by engulfing the prey through the sulcus. Among the phytoplankton prey offered, C. polykrikoides ingested small phytoplankton species that had ESD's< or = 11 microm (e.g. the prymnesiophyte Isochrysis galbana, an unidentified cryptophyte, the cryptophyte Rhodomonas salina, the raphidophyte Heterosigma akashiwo, and the dinoflagellate Amphidinium carterae). It did not feed on larger phytoplankton species that had ESD's > or = 12 microm (e.g. the dinoflagellates Heterocapsa triquetra, Prorocentrum minimum, Scrippsiella sp., Alexandrium tamarense, Prorocentrum micans, Gymnodinium catenatum, Akashiwo sanguinea, and Lingulodinium polyedrum). Specific growth rates of C. polykrikoides on a cryptophyte increased with increasing mean prey concentration, with saturation at a mean prey concentration of approximately 270 ng C ml(-1) (i.e. 15,900 cells ml(-1)). The maximum specific growth rate (mixotrophic growth) of C. polykrikoides on a cryptophyte was 0.324 d(-1), under a 14:10 h light-dark cycle of 50 microE m(-2) s(-1), while its growth rate (phototrophic growth) under the same light conditions without added prey was 0.166 d(-1). Maximum ingestion and clearance rates of C. polykrikoides on a cryptophyte were 0.16 ng C grazer(-1)d(-1) (9.4 cells grazer(-1)d(-1)) and 0.33 microl grazer(-1)h(-1), respectively. Calculated grazing coefficients by C. polykrikoides on cryptophytes were 0.001-0.745 h(-1) (i.e. 0.1-53% of cryptophyte populations were removed by a C. polykrikoides population in 1 h). The results of the present study suggest that C. polykrikoides sometimes has a considerable grazing impact on populations of cryptophytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.