Electroceuticals provide promising opportunities for peripheral nerve regeneration, in terms of modulating the extensive endogenous tissue repair mechanisms between neural cell body, axons and target muscles. However, great challenges remain to deliver effective and controllable electroceuticals via bioelectronic implantable device. In this review, the modern fabrication methods of bioelectronic conduit for bridging critical nerve gaps after nerve injury are summarized, with regard to conductive materials and core manufacturing process. In addition, to deliver versatile electrical stimulation, the integration of implantable bioelectronic device is discussed, including wireless energy harvesters, actuators and sensors. Moreover, a comprehensive insight of beneficial mechanisms is presented, including up-to-date in vitro, in vivo and clinical evidence. By integrating conductive biomaterials, 3D engineering manufacturing process and bioelectronic platform to deliver versatile electroceuticals, the modern biofabrication enables comprehensive biomimetic therapies for neural tissue engineering and regeneration in the new era.
Thermal sensations contribute to our ability to perceive and explore the physical world. Reproducing these sensations in a spatiotemporally programmable manner through wireless computer control could enhance virtual experiences beyond those supported by video, audio and, increasingly, haptic inputs. Flexible, lightweight and thin devices that deliver patterns of thermal stimulation across large areas of the skin at any location of the body are of great interest in this context. Applications range from those in gaming and remote socioemotional communications, to medical therapies and physical rehabilitation. Here, we present a set of ideas that form the foundations of a skin-integrated technology for power-efficient generation of thermal sensations across the skin, with real-time, closed-loop control. The systems exploit passive cooling mechanisms, actively switchable thermal barrier interfaces, thin resistive heaters and flexible electronics configured in a pixelated layout with wireless interfaces to portable devices, the internet and cloud data infrastructure. Systematic experimental studies and simulation results explore the essential mechanisms and guide the selection of optimized choices in design. Demonstration examples with human subjects feature active thermoregulation, virtual social interactions, and sensory expansion.
Peripheral nerve injuries cause various disabilities related to loss of motor and sensory functions. The treatment of these injuries typically requires surgical operations for improving functional recovery of the nerve. However, capabilities for continuous nerve monitoring remain a challenge. Herein, a battery‐free, wireless, cuff‐type, implantable, multimodal physical sensing platform for continuous in vivo monitoring of temperature and strain from the injured nerve is introduced. The thin, soft temperature, and strain sensors wrapped around the nerve exhibit good sensitivity, excellent stability, high linearity, and minimum hysteresis in relevant ranges. In particular, the strain sensor integrated with circuits for temperature compensation provides reliable, accurate strain monitoring with negligible temperature dependence. The system enables power harvesting and data communication to wireless, multiple implanted devices wrapped around the nerve. Experimental evaluations, verified by numerical simulations, with animal tests, demonstrate the feasibility and stability of the sensor system, which has great potential for continuous in vivo nerve monitoring from an early stage to complete regeneration.
Porous ceramics have been utilized in various fields due to their advantages derived from characteristics of ceramics and porous structure and they were produced by versatile fabricating methods. However, the adoption of differently scaled pores in the porous ceramics by conventional pore forming strategies which results in dual-scale porosity has been studied to combine the specific functional abilities of each scaled pore. Those proposed strategies were supplemented to the recent additive manufacturing methods for constructing complicated structure with precisely controlled fabricating conditions. In this review, we provide the researches creating dual-scale porous ceramics with additive manufacturing which utilized the ceramic slurries containing homogeneous solution of photocurable monomers and terpenes. Introduction of the basic way to prepare photocurable monomer and terpene incorporated ceramic slurries which are suitable for specific printing mechanism was firstly discussed. And based on the characteristics of slurries, lithography-based and extrusion-based method are discussed with the experimental results. Subsequently, the remaining challenges of the techniques are further discussed with suggesting potentially capable approaches to overcome the limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.