The yeast Candida tropicalis produces xylitol, a natural, low-calorie sweetener whose metabolism does not require insulin, by catalytic activity of NADPH-dependent xylose reductase. The oxidative pentose phosphate pathway (PPP) is a major basis for NADPH biosynthesis in C. tropicalis. In order to increase xylitol production rate, xylitol dehydrogenase gene (XYL2)disrupted C. tropicalis strain BSXDH-3 was engineered to co-express zwf and gnd genes which, respectively encodes glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6-PGDH), under the control of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. NADPH-dependent xylitol production was higher in the engineered strain, termed "PP", than in BSXDH-3. In fermentation experiments using glycerol as a co-substrate with xylose, strain PP showed volumetric xylitol productivity of 1.25 g l(-1) h(-1), 21% higher than the rate (1.04 g l(-1) h(-1)) in BSXDH-3. This is the first report of increased metabolic flux toward PPP in C. tropicalis for NADPH regeneration and enhanced xylitol production.
Xylose reductase (XR) is the first enzyme in d-xylose metabolism, catalyzing the reduction of d-xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in industrial xylitol production. XR from the ascomycete Neurospora crassa (NcXR) has high catalytic efficiency; however, NcXR is not expressed in C. tropicalis because of difference in codon usage between the two species. In this study, NcXR codons were changed to those preferred in C. tropicalis. This codon-optimized NcXR gene (termed NXRG) was placed under control of a constitutive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter derived from C. tropicalis, and integrated into the genome of xylitol dehydrogenase gene (XYL2)-disrupted C. tropicalis. High expression level of NXRG was confirmed by determining XR activity in cells grown on glucose medium. The resulting recombinant strain, LNG2, showed high XR activity (2.86 U (mg of protein)−1), whereas parent strain BSXDH-3 showed no activity. In xylitol fermentation using glucose as a co-substrate with xylose, LNG2 showed xylitol production rate 1.44 g L−1 h−1 and xylitol yield of 96% at 44 h, which were 73 and 62%, respectively, higher than corresponding values for BSXDH-3 (rate 0.83 g L−1 h−1; yield 59%).
BackgroundSamsoeum has long been used in Korea and other Asian countries as a traditional medicine to treat various diseases. In the present study, we investigated the antiasthma effect of the herbal medicine Samsoeum water extract (SSEW) using an in vivo ovalbumin (OVA)-induced asthmatic model.MethodsFemale BALB/c mice were sensitized by an intraperitoneal injection of OVA and subsequently challenged with nebulized OVA. We investigated the number of inflammatory cells, the production of Th1/Th2 cytokines and chemokine in bronchoalveolar lavage fluid (BALF), histological changes in lung tissue, the infiltration of inflammatory cells and hyperplasia of goblet cells in lung tissue, the levels of immunoglobulin E (IgE) in BALF and plasma, and the expression of inducible nitric oxide synthase (iNOS) in lung tissue.ResultsOur findings indicated that SSEW decreased the accumulation of inflammatory cells (particularly, eosinophil and neutrophil) and regulated the balance in the production of Th1/Th2 cytokines and chemokine in BALF. Moreover, SSEW suppressed the level of IgE in BALF and plasma, and inhibited the infiltration of inflammatory cells, hyperplasia of goblet cells, and the expression of iNOS in lung tissue.ConclusionsCollectively, these results suggest that, because of its anti-inflammatory and antiasthma properties, SSEW may be useful in reducing airway inflammation in the treatment of allergic asthma.
Abstract. EBM84 is a traditional herbal medicine and a combination of extracts obtained from Pinellia ternata and Zingiber officinale. It is traditionally used to treat vomiting, nausea, sputum and gastrointestinal disorders, and functions is an effective expectorant. In this study, we evaluated the protective effects of EBM84 on asthmatic responses, particularly mucus hypersecretion in an ovalbumin (OVA)-induced murine model of asthma. We also analyzed EBM84 composition using high performance liquid chromatography. Animals were sensitized on days 0 and 14 via intraperitoneal injection using 20 µg OVA. On days 21, 22 and 23 after initial sensitization, the mice received an airway challenge with OVA (1% w/v in PBS) for 1 h using an ultrasonic nebulizer (NE-U12). EBM84 was administered by gavage to the mice at doses of 16.9, 33.8 and 67.5 mg/kg once daily from days 18 to 23. EBM84 administration significantly lowered elevated levels of interleukin (IL)-4, IL-13, eotaxin and immunoglobulin (Ig)E in the bronchoalveolar lavage fluid or plasma. Airway inflammation and mucus hypersecretion were attenuated following EBM84 administration. EBM84 also inhibited the overexpression of mucin 5AC (MUC5AC) induced by OVA challenge in lung tissue. This result was consistent with the immunohistochemistry results. Our results indicate that EBM84 effectively inhibited airway inflammation and mucus hypersecretion via the downregulation of T helper 2 (Th2) cytokines, which reduced MUC5AC expression. Therefore, EBM84 has potential as a useful medicine for the treatment of allergic asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.