Active hemostatic agents can play a crucial role in saving patients’ lives during surgery. Active hemostats have several advantages including utilization of natural blood coagulation and biocompatibility. Among them, although human neutrophil peptide‐1 (HNP‐1) has been previously reported with the hemostatic mechanism, which part of HNP‐1 facilitates the hemostatic activity is not known. Here, a partial peptide (HNP‐F) promoting hemostasis, originating from HNP‐1, has been newly identified by the blood coagulation ability test. HNP‐F shows the best hemostatic effect between the anterior half and posterior half of peptides. Moreover, microscopic images show platelet aggregation and an increase in the concentration of platelet factor 4, and the scanning electron microscope image of platelets support platelet activation by HNP‐F. Thromboelastography indicates decreased clotting time and increased physical properties of blood clotting. Mouse liver experiments demonstrate improved hemostatic effect by treatment of peptide solution. Cell viability and hemolysis assays confirm the HNP‐F's biosafety. It is hypothesized that the surface charge and structure of HNP‐F could be favorable to interact with fibrinogen or thrombospondin‐1. Collectively, because HNP‐F as an active peptide hemostat has many advantages, it could be expected to become a potent hemostatic biomaterial, additive or pharmaceutical candidate for various hemostatic applications.
On-site predetection of pathogens could significantly decrease of a disease outbreak or national loss in most of the countries. However, conventional detection techniques are limited in use for on-site detection due to the necessity of specialized skill or equipment. Therefore, it is necessary to develop a new technique that can predetect pathogens in the field without special skills or equipment. Here, a DNAzyme strategy to control a plasmonic biosensor for rapid and simple visual detection of Salmonella choleraesuis is adopted. Multicomponent DNAzyme formed by target addition can cleave the linker effectively at 50°C. Linker cleavage induces dispersion of two DNA-immobilized gold nanoparticles and color change. Under optimized assay conditions, the target could be detected via visual discrimination sensitively and specifically. Moreover, the biosensor shows the possibility of practical use with contaminants and a 16S rRNA real target. As a result, the proposed plasmonic biosensor can visually detect S. choleraesuis without unstable enzymes, a specialized technique, or equipment. Therefore, these advantages could allow that this biosensor would be used for on-site predetection to lower the risk of transmission of infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.