Objective: To determine the effects of graphene oxide (GO) deposition (on a zirconia surface) on bacterial adhesion and osteoblast activation. Methods: An atmospheric pressure plasma generator (PGS-300) was used to coat Ar/CH 4 mixed gas onto zirconia specimens (15-mm diameter × 2.5-mm thick disks) at a rate of 10 L/ min and 240 V. Zirconia specimens were divided into two groups: uncoated (control; Zr) group and GO-coated (Zr-GO) group. Surface characteristics and element structures of each specimen were evaluated by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and contact angle. Additionally, crystal violet staining was performed to assess the adhesion of Streptococcus mutans. WST-8 and ALP (Alkaline phosphatase) assays were conducted to evaluate MC3T3-E1 osteoblast adhesion, proliferation, and differentiation. Statistical analysis was calculated by the Mann-Whitney U-test. Results: FE-SEM and Raman spectroscopy demonstrated effective GO deposition on the zirconia surface in Zr-GO. The attachment and biofilm formation of S. mutans was significantly reduced in Zr-GO compared with that of Zr (P < 0.05). While no significant differences in cell attachment of MC3T3-1 were observed, both proliferation and differentiation were increased in Zr-GO as compared with that of Zr (P < 0.05). Significance: GO-coated zirconia inhibited the attachment of S. mutans and stimulated proliferation and differentiation of osteoblasts. Therefore, GO-coated zirconia can prevent peri-implantitis by inhibiting bacterial adhesion. Moreover, its osteogenic ability can increase bone adhesion and success rate of implants.
This study compared the surface roughness, contact angle, surface energy, residual monomers, degree of conversion, and flexural strength of 3D-printed dental resin under various washing conditions. The specimens were printed with a digital light processing (DLP) printer and were divided into four groups: the group dipped in IPA for 5 s (IPA-D), the group washed in IPA for 1 min (IPA-1), the group washed in IPA for 10 min (IPA-10), and the group washed with TPM for 10 min (TPM-10). Following, the groups were redivided into two groups: a cured group and an uncured group. All experimental data were statistically analyzed using one-way analysis of variance and Tukey’s test. In all groups, the surface roughness showed a value of 1.2–1.8 μm, with no significant difference (p > 0.05). Contact angle showed a significant difference between the three groups using IPA and the TPM group, whereby the TPM-washed specimen showed a low contact angle (p < 0.05). The degree of conversion (DOC) increased in the following order: IPA-D group, IPA-1 group, IPA-10 group, and TPM-10 group, exhibiting a significant difference between all groups (p < 0.05). Flexural strength was measured at 110–130 MPa in all groups, with no significant difference between groups (p > 0.05). The washing time and washing solution type of the 3D printing material had no significant effect on surface roughness and flexural strength.
The alternative antibacterial treatment photothermal therapy (PTT) significantly affects oral microbiota inactivation. In this work, graphene with photothermal properties was coated on a zirconia surface using atmospheric pressure plasma, and then the antibacterial properties against oral bacteria were evaluated. For the graphene oxide coating on the zirconia specimens, an atmospheric pressure plasma generator (PGS-300, Expantech, Suwon, Republic of Korea) was used, and an Ar/CH4 gas mixture was coated on a zirconia specimen at a power of 240 W and a rate of 10 L/min. In the physiological property test, the surface properties were evaluated by measuring the surface shape of the zirconia specimen coated with graphene oxide, as well as the chemical composition and contact angle of the surface. In the biological experiment, the degree of adhesion of Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis) was determined by crystal violet assay and live/dead staining. All statistical analyzes were performed using SPSS 21.0 (SPSS Inc., Chicago, IL, USA). The group in which the zirconia specimen coated with graphene oxide was irradiated with near-infrared rays demonstrated a significant reduction in the adhesion of S. mutans and P. gingivalis compared with the group not irradiated. The oral microbiota inactivation was reduced by the photothermal effect on the zirconia coated with graphene oxide, exhibiting photothermal properties.
This study presents a novel synthesis route for high-entropy alloys (HEAs) and high-entropy metallic glass (HEMG) using radio frequency (RF) magnetron sputtering and controlling the HEA phase selection according to atomic size difference (δ) and film thickness. The preparation of HEAs using sputtering requires either multitargets or the preparation of a target containing at least five distinct elements. In developing HEA-preparation techniques, the emergence of a novel sputtering target system is promising to prepare a wide range of HEAs. A new HEA-preparation technique is developed to avoid multitargets and configure the target elements with the required components in a single target system. Because of a customizable target facility, initially, a TiZrNbMoTaCr target emerged with an amorphous phase owing to a high δ value of 7.6, which was followed by a solid solution (SS) by lowering the δ value to 5 (≤6.6). Thus, this system was tested for the first time to prepare TiZrNbMoTa HEA and TiZrNbMoTa HEMG via RF magnetron sputtering. Both films were analyzed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, field emission scanning electron microscopy cross-sectional thickness, and atomic force microscopy (AFM). Furthermore, HEMG showed higher hardness 10.3 (±0.17) GPa, modulus 186 (±7) GPa, elastic deformation (0.055) and plastic deformation (0.032 GPa), smooth surface, lower corrosion current density (I corr), and robust cell viability compared to CP-Ti and HEA. XRD analysis of the film showed SS with a body-centered cubic (BCC) structure with (110) as the preferred orientation. The valence electron concentration [VEC = 4.8 (<6.87)] also confirmed the BCC structure. Furthermore, the morphology of the thin film was analyzed through AFM, revealing a smooth surface for HEMG. Inclusively, the concept of configurational entropy (ΔS mix) is applied and the crystalline phase is achieved at room temperature, optimizing the processing by avoiding further furnace usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.