A novel core-shell microcapsule system is developed in this study to mimic the miniaturized 3D architecture of pre-hatching embryos with an aqueous liquid core of embryonic cells and a hydrogel-shell of zona pellucida. This is done by microfabricating a non-planar microfluidic flow-focusing device that enables one-step generation of microcapsules with an alginate hydrogel shell and an aqueous liquid core of cells from two aqueous fluids. Mouse embryonic stem (ES) cells encapsulated in the liquid core are found to survive well (> 92 %). Moreover, ~ 20 ES cells in the core can proliferate to form a single ES cell aggregate in each microcapsule within 7 days while at least a few hundred cells are usually needed by the commonly used hanging-drop method to form an embryoid body (EB) in each hanging drop. Quantitative RT-PCR analyses show significantly higher expression of pluripotency marker genes in the 3D aggregated ES cells compared to the cells under 2D culture. The aggregated ES cells can be efficiently differentiated into beating cardiomyocytes using a small molecule (cardiogenol C) without complex combination of multiple growth factors. Taken together, the novel 3D microfluidic and pre-hatching embryo-like microcapsule systems are of importance to facilitate in vitro culture of pluripotent stem cells for their ever-increasing use in modern cell-based medicine.
Tumor reinitiating cancer stem-like cells are responsible for cancer recurrence associated with conventional chemotherapy. We developed a doxorubicin-encapsulated polymeric nanoparticle surface-decorated with chitosan that can specifically target the CD44 receptors of these cells. This nanoparticle system was engineered to release the doxorubicin in acidic environments, which occurs when the nanoparticles are localized in the acidic tumor microenvironment and when they are internalized and localized in the cellular endosomes/lysosomes. This nanoparticle design strategy increases the cytotoxicity of the doxorubicin by six times in comparison to the use of free doxorubicin for eliminating CD44(+) cancer stem-like cells residing in 3D mammary tumor spheroids (i.e., mammospheres). We further show these nanoparticles reduced the size of tumors in an orthotopic xenograft tumor model with no evident systemic toxicity. The development of nanoparticle system to target cancer stem-like cells with low systemic toxicity provides a new treatment arsenal for improving the survival of cancer patients.
In this study, we synthesized empty core-shell structured nanocapsules of Pluronic F127 and chitosan and characterized the thermal responsiveness of the nanocapsules in size and wall-permeability. Moreover, we determined the feasibility of using the nanocapsules to encapsulate small molecules for temperature-controlled release and intracellular delivery. The nanocapsules are ∼37 nm at 37 °C and expand to ∼240 nm when cooled to 4 °C in aqueous solutions, exhibiting >200 times change in volume. Moreover, the permeability of the nanocapsule wall is high at 4 °C (when the nanocapsules are swollen), allowing free diffusion of small molecules (ethidium bromide, MW = 394.3 Da) across the wall, while at 37 °C (when the nanocapsules are swollen), the wall-permeability is so low that the small molecules can be effectively withheld in the nanocapsule for hours. As a result of their thermal responsiveness in size and wall-permeability, the nanocapsules are capable of encapsulating the small molecules for temperature-controlled release and intracellular delivery into the cytosol of both cancerous (MCF-7) and noncancerous (C3H10T1/2) mammalian cells. The cancerous cells were found to take up the nanocapsules much faster than the noncancerous cells during 45 min incubation at 37 °C. Moreover, toxicity of the nanocapsules as a delivery vehicle was found to be negligible. The Pluronic F127-chitosan nanocapsules should be very useful for encapsulating small therapeutic agents to treat diseases particularly when it is combined with cryotherapy where the process of cooling and heating between 37 °C and hypothermic temperatures is naturally done.
Social interactions occur between multiple individuals, but what is the detailed relationship between the neural dynamics across their brains? To address this question across timescales and levels of neural activity, we used wireless electrophysiology to simultaneously record from pairs of bats engaged in a wide range of natural social interactions. We found that neural activity was remarkably correlated between their brains over timescales from seconds to hours. The correlation depended on a shared social environment and was most prominent in high frequency local field potentials (>30 Hz), followed by local spiking activity. Furthermore, the degree of neural correlation covaried with the extent of social interactions, and an increase in correlation preceded their initiation. These results show that inter-brain correlation is an inherent feature of natural social interactions, reveal the domain of neural activity where it is most prominent, and provide a foundation for studying its functional role in social behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.