In this work, we investigate sea surface temperature (SST) cooling under binary typhoon conditions. We particularly focus on parallel- and cross-type typhoon paths during four typhoon events: Tembin and Bolaven in 2012, and Typhoon Chan-hom and Linfa in 2015. Wave-induced effects were simulated using a third-generation numeric model, WAVEWATCH III (WW3), and were subsequently included in SST simulations using the Stony Brook Parallel Ocean Model (sbPOM). Four wave-induced effects were analyzed: breaking waves, nonbreaking waves, radiation stress, and Stokes drift. Comparison of WW3-simulated significant wave height (SWH) data with measurements from the Jason-2 altimeter showed that the root mean square error (RMSE) was less than 0.6 m with a correlation (COR) of 0.9. When the four typhoon-wave-induced effects were included in sbPOM simulations, the simulated SSTs had an RMSE of 1 °C with a COR of 0.99 as compared to the Argos data. This was better than the RMSE and COR recovered between the measured and simulated SSTs, which were 1.4 °C and 0.96, respectively, when the four terms were not included. In particular, our results show that the effects of Stokes drift, as well as of nonbreaking waves, were an important factor in SST reduction during binary typhoons. The horizontal profile of the sbPOM-simulated SST for parallel-type typhoon paths (Typhoons Tembin and Bolaven) suggested that the observed finger pattern of SST cooling (up to 2 °C) was probably caused by drag from typhoon Tembin. SST was reduced by up to 4 °C for cross-type typhoon paths (Typhoons Chan-hom and Linfa). In general, mixing significantly increased when the four wave-induced effects were included. The vertical profile of SST indicated that disturbance depth increased (up to 100 m) for cross-type typhoon paths because the mixing intensity was greater for cross-type typhoons than for parallel-type typhoons.
This study investigated the performance of two ocean wave models, that is, Simulation Wave Nearshore (SWAN) and WAVEWATCH-III (WW3), and the interannual and seasonal variability of transport induced by Stokes drift during the period from 1989 to 2019. Three types of sea surface wind products were used for wave simulation: the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim, the Cross Calibrated Multi-Platform Version 2.0 (CCMP V2.0) from Remote Sensing Systems (RSS), and the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS). The modeling was validated against wave measurements from the Jason-2 altimeter in 2015. The analysis found that the root mean square error (RMSE) of significant wave height (SWH) from the WW3 model using CCMP wind data was 0.17 m, which is less than the ~0.6-m RMSE of SWH from the SWAN model using the other types of wind data. The simulations from the WW3 model using CCMP wind data indicated that the Stokes transport is up to 2 m2/s higher in the South China Sea and Japan Sea than that at other ocean regions in January. The interannual variation showed that the Stokes transport generally increased from 0.25 m2/s in 1989 to 0.35 m2/s in 2018. We also found that the accuracy of the sea surface temperature (SST) simulation using the Stony Brook Parallel Ocean Model (sbPOM) is improved by as much as 0.5 °C when Stokes transport is considered to validate the sbPOM-simulated SST against the measurements from Argo in 2012-2015. In particular, the Stokes transport has a negative effect on Summer (March to June) and has a positive effect in Autumn (July to September), which is probably caused by the tropical cyclones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.