We have combined genetic algorithm (GA) and all paired (AP) support vector machine (SVM) methods for multiclass cancer categorization. Predictive features can be automatically determined through iterative GA/SVM, leading to very compact sets of non-redundant cancer-relevant genes with the best classification performance reported to date. Interestingly, these different classifier sets harbor only modest overlapping gene features but have similar levels of accuracy in leave-one-out cross-validations (LOOCV). Further characterization of these optimal tumor discriminant features, including the use of nearest shrunken centroids (NSC), analysis of annotations and literature text mining, reveals previously unappreciated tumor subclasses and a series of genes that could be used as cancer biomarkers. With this approach, we believe that microarray-based multiclass molecular analysis can be an effective tool for cancer biomarker discovery and subsequent molecular cancer diagnosis.
P-glycoprotein (Pgp) mediated drug efflux affects the absorption, distribution, and clearance of a broad structural variety of drugs. Early assessment of the potential of compounds to interact with Pgp can aid in the selection and optimization of drug candidates. To differentiate nonsubstrates from substrates of Pgp, a robust predictive pharmacophore model was targeted in a supervised analysis of three-dimensional (3D) pharmacophores from 163 published compounds. A comprehensive set of pharmacophores has been generated from conformers of whole molecules of both substrates and nonsubstrates of P-glycoprotein. Four-point 3D pharmacophores were employed to increase the amount of shape information and resolution, including the ability to distinguish chirality. A novel algorithm of the pharmacophore-specific t-statistic was applied to the actual structure-activity data and 400 sets of artificial data (sampled by decorrelating the structure and Pgp efflux activity). The optimal size of the significant pharmacophore set was determined through this analysis. A simple classification tree using nine distinct pharmacophores was constructed to distinguish nonsubstrates from substrates of Pgp. An overall accuracy of 87.7% was achieved for the training set and 87.6% for the external independent test set. Furthermore, each of nine pharmacophores can be independently utilized as an accurate marker for potential Pgp substrates.
In this paper, the production of a logarithmic spiral bevel gear prototype is illustrated by the manufacture of the gear pinion. Firstly, the conical gear body of a logarithmic spiral bevel gear pinion was shaped on a C6140A1 lathe. A kinematic model of a five-axis vertical machining centre DMG DMU40 monoBLOCK, with the position and orientation of each axis relative to the movement of the workpiece, was created. In addition, the processing coordinate transformation formula between the workpiece coordinate system and the cutter coordinate system was devised. The cutter location file was converted to the numerical control code of the DMG DMU40 monoBLOCK. Finally, the pinion of a logarithmic spiral bevel gear was machined on the DMG DMU40 monoBLOCK as a prototype to be used in further research of the logarithmic spiral bevel gear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.