Stochastic, as well as fuzzy uncertainty, can be found in most real-world systems. Considering both types of uncertainties simultaneously makes optimization problems incredibly challenging. In this paper, we analyze the permutation flow shop problem (PFSP) with both stochastic and fuzzy processing times. The main goal is to find the solution (permutation of jobs) that minimizes the expected makespan. However, due to the existence of uncertainty, other characteristics of the solution are also taken into account. In particular, we illustrate how survival analysis can be employed to enrich the probabilistic information given to decision-makers. To solve the aforementioned optimization problem, we extend the concept of a simheuristic framework so it can also include fuzzy elements. Hence, both stochastic and fuzzy uncertainty are simultaneously incorporated in the PFSP. In order to test our approach, classical PFSP instances have been adapted and extended, so that processing times become either stochastic or fuzzy. The experimental results show the effectiveness of the proposed approach when compared with more traditional ones.
Stochastic, as well as fuzzy uncertainty, can be found in most real‐world systems. Considering both types of uncertainties simultaneously makes optimization problems incredibly challenging. In this paper we propose a fuzzy simheuristic to solve the Time Capacitated Arc Routing Problem (TCARP) when the nature of the travel time can either be deterministic, stochastic or fuzzy. The main goal is to find a solution (vehicle routes) that minimizes the total time spent in servicing the required arcs. However, due to uncertainty, other characteristics of the solution are also considered. In particular, we illustrate how reliability concepts can enrich the probabilistic information given to decision‐makers. In order to solve the aforementioned optimization problem, we extend the concept of simheuristic framework so it can also include fuzzy elements. Hence, both stochastic and fuzzy uncertainty are simultaneously incorporated into the CARP. In order to test our approach, classical CARP instances have been adapted and extended so that customers' demands become either stochastic or fuzzy. The experimental results show the effectiveness of the proposed approach when compared with more traditional ones. In particular, our fuzzy simheuristic is capable of generating new best‐known solutions for the stochastic versions of some instances belonging to the tegl, tcarp, val, and rural benchmarks.
An efficient management of production plants has to consider several external and internal factors, such as potential interruptions of the ongoing processes. Automated guided vehicles (AGVs) are becoming a widespread technology that offers many advantages. These AGVs can perform complex tasks in an autonomous way. However, an inefficient schedule of the tasks assigned to an AGV can suffer from unwanted interruptions and idle times, which in turn will affect the total time required by the AGV to complete its assigned tasks. In order to avoid these issues, this paper proposes a heuristic-based approach that: (i) makes use of a delay matrix to estimate circuit delays for different daily times; (ii) employs these estimates to define an initial itinerary of tasks for an AGV; and (iii) dynamically adjusts the initial agenda as new information on actual delays is obtained by the system. The objective is to minimize the total time required for the AGV to complete all the assigned tasks, taking into account situations that generate unexpected disruptions along the circuits that the AGV follows. In order to test and validate the proposed approach, a series of computational experiments utilizing real-life data are carried out. These experiments allow us to measure the improvement gap with respect to the former policy used by the system managers.
The popularity of blockchain technology stems largely from its association with cryptocurrencies, but its potential applications extend beyond this. Fungible tokens, which are interchangeable, can facilitate value transactions, while smart contracts using non-fungible tokens enable the exchange of digital assets. Utilizing blockchain technology, tokenized platforms can create virtual markets that operate without the need for a central authority. In principle, blockchain technology provides these markets with a high degree of security, trustworthiness, and dependability. This article surveys recent developments in these areas, including examples of architectures, designs, challenges, and best practices (case studies) for the design and implementation of tokenized platforms for exchanging digital assets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.