BackgroundOnline health communities (OHCs) have become a major source of social support for people with health problems. Members of OHCs interact online with similar peers to seek, receive, and provide different types of social support, such as informational support, emotional support, and companionship. As active participations in an OHC are beneficial to both the OHC and its users, it is important to understand factors related to users’ participations and predict user churn for user retention efforts.ObjectiveThis study aimed to analyze OHC users’ Web-based interactions, reveal which types of social support activities are related to users’ participation, and predict whether and when a user will churn from the OHC.MethodsWe collected a large-scale dataset from a popular OHC for cancer survivors. We used text mining techniques to decide what kinds of social support each post contained. We illustrated how we built text classifiers for 5 different social support categories: seeking informational support (SIS), providing informational support (PIS), seeking emotional support (SES), providing emotional support (PES), and companionship (COM). We conducted survival analysis to identify types of social support related to users’ continued participation. Using supervised machine learning methods, we developed a predictive model for user churn.ResultsUsers’ behaviors to PIS, SES, and COM had hazard ratios significantly lower than 1 (0.948, 0.972, and 0.919, respectively) and were indicative of continued participations in the OHC. The churn prediction model based on social support activities offers accurate predictions on whether and when a user will leave the OHC.ConclusionsDetecting different types of social support activities via text mining contributes to better understanding and prediction of users’ participations in an OHC. The outcome of this study can help the management and design of a sustainable OHC via more proactive and effective user retention strategies.
BackgroundOnline health communities (OHCs) provide a convenient and commonly used way for people to connect around shared health experiences, exchange information, and receive social support. Users often interact with peers via multiple communication methods, forming a multirelational social network. Use of OHCs is common among smokers, but to date, there have been no studies on users’ online interactions via different means of online communications and how such interactions are related to smoking cessation. Such information can be retrieved in multirelational social networks and could be useful in the design and management of OHCs.ObjectiveTo examine the social network structure of an OHC for smoking cessation using a multirelational approach, and to explore links between subnetwork position (ie, centrality) and smoking abstinence.MethodsWe used NetworkX to construct 4 subnetworks based on users’ interactions via blogs, group discussions, message boards, and private messages. We illustrated topological properties of each subnetwork, including its degree distribution, density, and connectedness, and compared similarities among these subnetworks by correlating node centrality and measuring edge overlap. We also investigated coevolution dynamics of this multirelational network by analyzing tie formation sequences across subnetworks. In a subset of users who participated in a randomized, smoking cessation treatment trial, we conducted user profiling based on users’ centralities in the 4 subnetworks and identified user groups using clustering techniques. We further examined 30-day smoking abstinence at 3 months postenrollment in relation to users’ centralities in the 4 subnetworks.ResultsThe 4 subnetworks have different topological characteristics, with message board having the most nodes (36,536) and group discussion having the highest network density (4.35×10−3). Blog and message board subnetworks had the most similar structures with an in-degree correlation of .45, out-degree correlation of .55, and Jaccard coefficient of .23 for edge overlap. A new tie in the group discussion subnetwork had the lowest probability of triggering subsequent ties among the same two users in other subnetworks: 6.33% (54,142/855,893) for 2-tie sequences and 2.13% (18,207/855,893) for 3-tie sequences. Users’ centralities varied across the 4 subnetworks. Among a subset of users enrolled in a randomized trial, those with higher centralities across subnetworks generally had higher abstinence rates, although high centrality in the group discussion subnetwork was not associated with higher abstinence rates.ConclusionsA multirelational approach revealed insights that could not be obtained by analyzing the aggregated network alone, such as the ineffectiveness of group discussions in triggering social ties of other types, the advantage of blogs, message boards, and private messages in leading to subsequent social ties of other types, and the weak connection between one’s centrality in the group discussion subnetwork and smoking abstinence. Thes...
JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day (cpd), therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz (i.e. ∼1 cpd accidental background) in the default fiducial volume, above an energy threshold of 0.7 MeV.
Online smoking cessation communities help hundreds of thousands of smokers quit smoking and stay abstinent each year. Content shared by users of such communities may contain important information that could enable more effective and personally tailored cessation treatment recommendations. This study demonstrates a novel approach to determine individuals’ smoking status by applying machine learning techniques to classify user-generated content in an online cessation community. Study data were from BecomeAnEX.org, a large, online smoking cessation community. We extracted three types of novel features from a post: domain-specific features, author-based features, and thread-based features. These features helped to improve the smoking status identification (quit vs. not) performance by 9.7% compared to using only text features of a post’s content. In other words, knowledge from domain experts, data regarding the post author’s patterns of online engagement, and other community member reactions to the post can help to determine the focal post author’s smoking status, over and above the actual content of a focal post. We demonstrated that machine learning methods can be applied to user-generated data from online cessation communities to validly and reliably discern important user characteristics, which could aid decision support on intervention tailoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.