Materials for photosensitized oxygen activation are extremely important for a suite of photodynamic applications in biomedical, analytical, and energy sectors. Carbon-based photosensitizers are attractive for their low cost and high stability, but most of them such as fullerene and graphene quantum dots suffer from low efficiency, and the rational design of carbon-based photosensitizers remains a challenge. Given the similar chemical origin of phosphorescence and photosensitization, we herein synthesized a series of nitrogen-doped carbon dots (C-dots) and confirmed that their photo-oxidation activity correlated with their phosphorescence quantum yields, providing a direction for the rational designing of such materials. Compared to other carbon nanomaterials and molecular photosensitizers, these C-dots have the highest activity, and they can finish oxidation reactions in a few seconds. The excellent photosensitized oxygen activation makes these water-soluble C-dots a promising oxidase-mimicking nanozyme for photodynamic antimicrobial chemotherapy and other applications.
Semiconductor quantum dots (QDs) exhibit unique optical and photophysical properties that offer significant advantages over organic dyes as optical labels for chemo/bio-sensing. This review addresses the methods for metal ion detection with QDs, including photoluminescent, electrochemiluminescent, photoelectrochemical, and electrochemical approaches. The main mechanisms of direct interaction between QDs and metal ions which lead to photoluminescence being either off or on, are discussed in detail. These direct interactions provide great opportunities for developing simple yet effect metal ion probes. Different methods to design the chemically-modified QD hybrid structures through anchoring metal ion-specific groups onto the surface of QDs are summarized. Due to the spatial separation of the luminescence center and analyte recognition sites, these chemically-modified QDs offer greatly improved sensitivity and selectivity for metal ions. Several interesting applications of QD-based metal ion probes are presented, with specific emphasis on cellular probes, coding probes and sensing with logic gate operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.