μ-Conotoxin GIIIA, a peptide toxin isolated from Conus geographus, preferentially blocks the skeletal muscle sodium channel NaV1.4. GIIIA folds compactly to a pyramidal structure stabilized by three disulfide bonds. To assess the contributions of individual disulfide bonds of GIIIA to the blockade of NaV1.4, seven disulfide-deficient analogues were prepared and characterized, each with one, two, or three pairs of disulfide-bonded Cys residues replaced with Ala. The inhibitory potency of the analogues against NaV1.4 was assayed by whole cell patch-clamp on rNaV1.4, heterologously expressed in HEK293 cells. The corresponding IC50 values were 0.069 ± 0.005 μM for GIIIA, 2.1 ± 0.3 μM for GIIIA-1, 3.3 ± 0.2 μM for GIIIA-2, and 15.8 ± 0.8 μM for GIIIA-3 (-1, -2 and -3 represent the removal of disulfide bridges Cys3–Cys15, Cys4–Cys20 and Cys10–Cys21, respectively). Other analogues were not active enough for IC50 measurement. Our results indicate that all three disulfide bonds of GIIIA are required to produce effective inhibition of NaV1.4, and the removal of any one significantly lowers its sodium channel binding affinity. Cys10–Cys21 is the most important for the NaV1.4 potency.
The voltage-gated sodium channel (VGSC) interacting peptide is of special interest for both basic research and pharmaceutical purposes. In this study, we established a yeast-two-hybrid based strategy to detect the interaction(s) between neurotoxic peptide and the extracellular region of VGSC. Using a previously reported neurotoxin JZTX-III as a model molecule, we demonstrated that the interactions between JZTX-III and the extracellular regions of its target hNav1.5 are detectable and the detected interactions are directly related to its activity. We further applied this strategy to the screening of VGSC interacting peptides. Using the extracellular region of hNav1.5 as the bait, we identified a novel sodium channel inhibitor SSCM-1 from a random peptide library. This peptide selectively inhibits hNav1.5 currents in the whole-cell patch clamp assays. This strategy might be used for the large scale screening for target-specific interacting peptides of VGSCs or other ion channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.