Serious infections caused by multidrug-resistant Staphylococcus aureus clearly urge the development of new antimicrobial agents. Drug repositioning has emerged as an alternative approach that enables us to rapidly identify effective drugs. We first reported a guanidine compound, isopropoxy benzene guanidine, had potent antibacterial activity against S. aureus. Unlike conventional antibiotics, repeated use of isopropoxy benzene guanidine had a lower probability of resistance section. We found that isopropoxy benzene guanidine triggered membrane damage by disrupting the cell membrane potential and cytoplasmic membrane integrity. Furthermore, we demonstrated that isopropoxy benzene guanidine is capable of treating invasive MRSA infections in vivo studies. These findings provided strong evidence that isopropoxy benzene guanidine represents a new chemical lead for novel antibacterial agent against multidrug-resistant S. aureus infections.
As antibiotic discovery stagnates, the world is facing a growing menace from the emergence of bacteria that are resistant to almost all available antibiotics. The key to winning this race is to explore distinctive mechanisms of antibiotics.
Plasmid-borne colistin resistance mediated by mcr-1 is a growing problem, which poses a serious challenge to the clinical application of colistin for Gram-negative bacterial infections. Drug combination is one of the effective strategies to treat colistin-resistant bacteria. Here, we found a guanidine compound, namely, isopropoxy benzene guanidine (IBG), which boosted the efficacy of colistin against mcr-1-positive Salmonella. This study aimed to develop a pharmacokinetics/pharmacodynamics (PK/PD) model by combining colistin with IBG against mcr-1-positive Salmonella in an intestinal infection model. Antibiotic susceptibility testing, checkerboard assays and time-kill curves were used to investigate the antibacterial activity of the synergistic activity of the combination. PK studies of colistin in the intestine were determined through oral gavage of single dose of 2, 4, 8, and 16 mg/kg of body weight in broilers with intestinal infection. On the contrary, PD studies were conducted over 24 h based on a single dose ranging from 2 to 16 mg/kg. The inhibitory effect Imax model was used for PK/PD modeling. The combination of colistin and IBG showed significant synergistic activity. The AUC0−24h/MIC index was used to evaluate the relationship between PK and PD, and the correlation was >0.9085. The AUC0−24h /MIC targets in combination required to achieve the bacteriostatic action, 3-log10 kill, and 4-log10 kill of bacterial counts were 47.55, 865.87, and 1894.39, respectively. These results can facilitate the evaluation of the use of IBG as a potential colistin adjuvant in the treatment of intestinal diseases in broilers caused by colistin-resistant Salmonella.
This study aimed to investigate the role of the probiotic Aspergillus niger on the production performance, egg quality, and cecal microbial load of Clostridium perfringens, Salmonella spp., and Escherichia coli in Hy-Line W-36 laying hens. A total of 72, 45-week-old Hy-Line W-36 laying hens were randomly allocated to one of the three dietary treatments with six replicates, and each replicate had four individually caged laying hens (n = 6 and 4 hens/replicate). The hens in each treatment group were fed a corn and soybean meal diet (Control), a diet supplemented with bacitracin methylene disalicylate (BMD) at a rate of 495 mg/kg of feed (Positive Control), or a diet supplemented with Aspergillus niger (Probioist®) at a rate of 220 mg/kg of feed (Probiotic). Supplementing probiotics in the laying hen diet significantly increased egg production at weeks 3 and 6 compared with the Positive Control. Haugh unit, a measure of egg quality, was significantly higher in laying hens fed the probiotic diet compared with the Control or Positive Control at week 10. Furthermore, the Probiotic group had numerically lower cecal microbial loads of pathogenic bacteria (Clostridium perfringens, Salmonella spp., and Escherichia coli) compared with the Control and Positive Control groups. The results suggest that Aspergillus niger could be used as a probiotic to improve laying hen performance and egg quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.