The widespread use of thermoelectric technology is constrained by a relatively low conversion efficiency of the bulk alloys, which is evaluated in terms of a dimensionless figure of merit (zT). ThezTof bulk alloys can be improved by reducing lattice thermal conductivity through grain boundary and point-defect scattering, which target low- and high-frequency phonons. Dense dislocation arrays formed at low-energy grain boundaries by liquid-phase compaction in Bi0.5Sb1.5Te3(bismuth antimony telluride) effectively scatter midfrequency phonons, leading to a substantially lower lattice thermal conductivity. Full-spectrum phonon scattering with minimal charge-carrier scattering dramatically improved thezTto 1.86 ± 0.15 at 320 kelvin (K). Further, a thermoelectric cooler confirmed the performance with a maximum temperature difference of 81 K, which is much higher than current commercial Peltier cooling devices.
Electrically induced resistive switching in metal insulator-metal structures is a subject of increasing scientific interest because it is one of the alternatives that satisfies current requirements for universal non-volatile memories. However, the origin of the switching mechanism is still controversial. Here we report the fabrication of a resistive switching device inside a transmission electron microscope, made from a Pt/SiO 2 /a-Ta 2 O 5 À x /a-TaO 2 À x /Pt structure, which clearly shows reversible bipolar resistive switching behaviour. The currentvoltage measurements simultaneously confirm each of the resistance states (set, reset and breakdown). In situ scanning transmission electron microscope experiments verify, at the atomic scale, that the switching effects occur by the formation and annihilation of conducting channels between a top Pt electrode and a TaO 2 À x base layer, which consist of nanoscale TaO 1 À x filaments. Information on the structure and dimensions of conductive channels observed in situ offers great potential for designing resistive switching devices with the high endurance and large scalability.
Solid electrolyte memories utilizing voltage‐induced resistance change display the capability of multilevel switching, but understanding of the microscopic switching mechanism has been left incomplete. Here, in situ TEM observation of voltage‐induced changes in the microstructure of a solid electrolyte memory is reported, revealing that the multilevel switching originates from the growth of multiple conducting filaments with nanometer‐sized diameter and spacing.
We report on rapid thermal chemical vapor deposition growth of silicon nanowires (Si NWs) that contain a high density of gold nanoclusters (Au NCs) with a uniform coverage over the entire length of the nanowire sidewalls. The Au NC-coated Si NWs with an antibody-coated surface obtain the unique capability to capture breast cancer cells at twice the highest efficiency currently achievable (~88% at 40 min cell incubation time) from a nanostructured substrate. We also found that irradiation of breast cancer cells captured on Au NC-coated Si NWs with a near-infrared light resulted in a high mortality rate of these cancer cells, raising a fine prospect for simultaneous capture and plasmonic photothermal therapy for circulating tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.