Hair follicles have characteristic sizes corresponding to their cycle specific stage. However, how the anagen hair follicle specifies its size remains elusive. Here, we show that in response to prolonged ectopic Wnt10b-mediated β-catenin activation, regenerating anagen hair follicles grow larger in size. In particular, the hair bulb, dermal papilla and hair shaft become enlarged. While the formation of different hair types (Guard, Awl, Auchene, and Zigzag) is unaffected. Interestingly, we found the effect of exogenous WNT10b was mainly on Zigzag and less on the other kinds of hairs. We observed dramatically enhanced proliferation within the matrix, DP and hair shaft of the enlarged AdWnt10b-treated hair follicles compared with those of normal hair follicles at P98. Furthermore, expression of CD34, a specific hair stem cell marker, was increased in its number to the bulge region after AdWnt10b treatment. Ectopic expression of CD34 throughout the ORS region was also observed. Many CD34 positive hair stem cells were actively proliferating in AdWnt10b-induced hair follicles. Importantly, subsequent co-treatment with the Wnt inhibitor, DKK1, reduced hair follicle enlargement, decreased proliferation and maintained proper hair stem cell localization. Moreover, injection of DKK1 during early anagen significantly reduced the width of prospective hairs. Together, these findings strongly suggest that a balance of Wnt10b/DKK1 governs reciprocal signaling between cutaneous epithelium and mesenchyme to regulate proper hair follicle size.
Gsdma3, a newly found gene, is expressed restrictedly in mouse skin keratinocytes and gastrointestinal tract. But until now, there is little information on the regulation and the function of Gsdma3 in skin keratinocytes. In our previous study, we found that Gsdma3 mutation resulted in a decrease in catagen-associated apoptosis of hair follicle keratinocytes. Apoptosis of skin keratinocytes is strictly regulated by a series of signal pathways, among of which, tumor necrosis factor (TNF)-α-induced signal pathway has been extensively studied. To further investigate the role and the pathway of Gsdma3 involved in skin keratinocyte apoptosis, using immunofluorescence, RT-PCR, western blot and TUNEL analysis, we showed here that accompanying TNF-α-induced apoptosis and Caspase-3 expression in mouse skin keratinocytes in vivo and in vitro, Gsdma3 expression was significantly upregulated. After Gsdma3 gene mutation, TNF-α-induced apoptosis and Caspase-3 expression in skin keratinocytes were reduced. The injection of Gsdma3 expression plasmid could directly enhance the apoptosis and Caspase-3 expression in skin keratinocytes. These results, taken together, indicated that in mouse skin keratinocytes, Gsdma3 expression could be regulated by TNF-α. Gsdma3 was not only involved in but also necessary for the TNF-α-induced apoptosis pathway by directly enhancing the Caspase3 expression as well as the apoptosis induction.
NG2-expressing cells are a population of periportal vascular stem/progenitors (MLpvNG2+ cells) that were isolated from healthy adult mouse liver by using a “Percoll-Plate-Wait” procedure. We demonstrated that isolated cells are able to restore liver function after transplantation into a cirrhotic liver, and co-localized with the pericyte marker (immunohistochemistry: PDGFR-β) and CK19. Cells were positive for: stem cell (Sca-1, CD133, Dlk) and liver stem cell markers (EpCAM, CD14, CD24, CD49f); and negative for: hematopoietic (CD34, CD45) and endothelial markers (CD31, vWf, von Willebrand factor). Cells were transplanted (1 × 106 cells) in mice with diethylnitrosamine-induced cirrhosis at week 6. Cells showed increased hepatic associated gene expression of alpha-fetoprotein (AFP), Albumin (Alb), Glucose-6-phosphatase (G6Pc), SRY (sex determining region Y)-box 9 (Sox9), hepatic nuclear factors (HNF1a, HNF1β, HNF3β, HNF4α, HNF6, Epithelial cell adhesion molecule (EpCAM), Leucine-rich repeated-containing G-protein coupled receptor 5-positive (Lgr5) and Tyrosine aminotransferase (TAT). Cells showed decreased fibrogenesis, hepatic stellate cell infiltration, Kupffer cells and inflammatory cytokines. Liver function markers improved. In a cirrhotic liver environment, cells could differentiate into hepatic lineages. In addition, grafted MLpvNG2+ cells could mobilize endogenous stem/progenitors to participate in liver repair. These results suggest that MLpvNG2+ cells may be novel adult liver progenitors that participate in liver regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.