Engineering an alcohol dehydrogenase with enhanced activity and stereoselectivity toward diaryl ketones: reduction of steric hindrance and change of the stereocontrol element.
In the present study, a Cr(III)-imprinted polymer (Cr(III)-IIP) was prepared by an easy one-step sol-gel reaction with a surface imprinting technique on the support of silica mesoporous material. A new SPE method for the speciation, separation, preconcentration, and determination of Cr(III) and Cr(VI) by inductively coupled plasma atomic emission spectrometry and UV on the mesoporous-imprinted polymer adsorbent was developed. The structure of the imprinted polymer was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. The adsorption kinetics, thermodynamics behavior, and recognition ability toward Cr(III) on Cr(III)-IIP and nonimprinted polymer were compared. The results showed that Cr(III)-IIP had higher selectivity and nearly a two times larger Langmuir adsorption capacity (38.50 mg/g) than that of NIP. The proposed method has been successfully applied in the determination and speciation of chromium in natural water samples with satisfactory results.
In the present work, a novel two-dimensional (2D) nickel ion-imprinted polymer (RAFT-IIP) has been successfully synthesized based on the graphene oxide/SiO2 composite by reversible addition-fragmentation chain-transfer (RAFT) polymerization. The imprinted materials obtained are characterized by Fourier transmission infrared spectrometry (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The results show that the thermal stability of the graphene oxide/SiO2 composite is obviously higher than that of graphene oxide. RAFT-IIP possesses an excellent 2D homogeneous imprinted polymer layer, which is a well-preserved unique structure of graphene oxide/SiO2. Owing to the intrinsic advantages of RAFT polymerization and 2D imprinted material, RAFT-IIP demonstrate a superior specific adsorption capacity (81.73 mg/g) and faster adsorption kinetics (30 min) for Ni(II) in comparison to the ion-imprinted polymer prepared by traditional radical polymerization and based on the common carbon material. Furthermore, the adsorption isotherm and selectivity toward Ni(II) onto RAFT-IIP and nonimprinted polymer (NIP) are investigated, indicating that RAFT-IIP has splendid recognizing ability and a nearly 3 times larger adsorption capacity than that of NIP (30.94 mg/g). Moreover, a three-level Box-Behnken experimental design with three factors combining the response surface method is utilized to optimize the desorption process. The optimal conditions for the desorption of Ni(II) from RAFT-IIP are as follows: an HCl-type eluent, an eluent concentration of 2.0 mol/L, and an eluent volume of 10 mL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.