The absence of targeted, single treatment methods produces low therapeutic value for treating cancers. To increase the accumulation of drugs in tumors and improve the treatment effectiveness, near-infrared 808 nm photothermal responsive dual aptamers-targeted docetaxel (DTX)-containing nanoparticles is proposed. In this system, DTX and NH HCO are loaded in thermosensitive liposomes. The surface of liposomes is coated with gold nanoshells and connected with sulfydryl (SH) modified AS1411 and S2.2 aptamers. The nanosystem has good biocompatibility and uniform size (diameter about 200 nm). The drug is rapidly released, reaching a maximum amount (84%) at 4 h under 808 nm laser irradiation. The experiments conducted in vitro and in vivo demonstrate the nanosystem can synergistically inhibit tumor growth by combination of chemotherapy, photothermal therapy, and biological therapy. Dual ligand functionalization significantly increases cellular uptake on breast cancer cell line (MCF-7) cells and achieves ultrasound imaging (USI) at tumor site. The results indicate that this drug delivery system is a promising theranostic agent involving light-thermal response at tumor sites, dual ligand targeted triplex therapy, and USI.
Recently, nanoplatforms with multiple functions, such as tumor-targeting drug carriers, MRI, optical imaging, thermal therapy etc., have become popular in the field of cancer research. The present study reports a novel multi-functional liposome for cancer theranostics. A dual targeted drug delivery with radiofrequency-triggered drug release and imaging based on the magnetic field influence was used advantageously for tumor multi-mechanism therapy. In this system, the surface of fullerene (C60) was decorated with iron oxide nanoparticles, and PEGylation formed a hybrid nanosystem (C60-Fe3O4-PEG2000). Thermosensitive liposomes (dipalmitoylphosphatidylcholine, DPPC) with DSPE-PEG2000-folate wrapped up the hybrid nanosystem and docetaxel (DTX), which were designed to combine features of biological and physical (magnetic) drug targeting for fullerene radiofrequency-triggered drug release. The magnetic liposomes not only served as powerful tumor diagnostic magnetic resonance imaging (MRI) contrast agents, but also as powerful agents for photothermal ablation of tumors. Furthermore, a remarkable thermal therapy combined chemotherapy multi-functional liposome nanoplatform converted radiofrequency energy into thermal energy to release drugs from thermosensitive liposomes, which was also observed during both in vitro and in vivo treatment. The multi-functional liposomes also could selectively kill cancer cells in highly localized regions via their excellent active tumor targeting and magnetic targeted abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.