In recent years, autonomous driving technology has been changing from “human adapting to vehicle” to “vehicle adapting to human”. To improve the adaptability of autonomous driving systems to human drivers, a time-series-based personalized lane change decision (LCD) model is proposed. Firstly, according to the characteristics of the subject vehicle (SV) with respect to speed, acceleration and headway, an unsupervised clustering algorithm, namely, a Gaussian mixture model (GMM), is used to identify its three different driving styles. Secondly, considering the interaction between the SV and the surrounding vehicles, the lane change (LC) gain value is produced by developing a gain function to characterize their interaction. On the basis of the recognition of the driving style, this gain value and LC feature parameters are employed as model inputs to develop a personalized LCD model on the basis of a long short-term memory (LSTM) recurrent neural network model (RNN). The proposed method is tested using the US Open Driving Dataset NGSIM. The results show that the accuracy, F1 score, and macro-average area under the curve (macro-AUC) value of the proposed method for LC behavior prediction are 0.965, 0.951 and 0.983, respectively, and the performance is significantly better than that of other mainstream models. At the same time, the method is able to capture the LCD behavior of different human drivers, enabling personalized driving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.