Quinoa (Chenopodium quinoa Willd.) with a history of 5000 years as food is extremely rich in nutrients and bioactive compounds, including γ-aminobutyric acid (GABA), a natural four-carbon non-protein amino acid with great benefits to human health. In quinoa, GABA generally increases with the germination time, but the underlying molecular mechanism is unclear. Here, we found that the GABA content in quinoa varied significantly among 25 varieties using an automatic amino acid analyzer. Next, six varieties (three low-GABA and three high-GABA varieties) were used for further analyses. The content of GABA in six varieties all showed an increasing trend after germination. In addition, Pearson's correlation analysis showed that the changes in GABA content were closely related to the transcript level or enzyme activity of three key enzymes including glutamate decarboxylase (GAD), GABA transaminase (GABA-T), and succinate-semialdehyde dehydrogenase (SSADH) in the GABA shunt, especially GAD. Based on RNA-sequencing analysis, eight GAD genes, two GABA-T genes, one SSADH gene, nine polyamine oxidase (PAO) genes, five diamine oxidase (DAO) genes, four 4-aminobutyraldehyde dehydrogenase (BADH) genes, and three thermospermine synthase ACAULIS5 (ACL5) genes were identified. Among these, CqGAD8 and CqGABA-T2 may make a greater contribution to GABA accumulation during quinoa germination.
We have cloned two full-length cDNAs from two ferritin genes (Aifer1 and Aifer2) of the bay scallop, Argopecten irradians (Lamarck 1819). The cDNAs are 1,019 and 827 bp in length and encode proteins of 171 and 173 amino acids, respectively. The 5' UTR of each contains a conserved iron response element (IRE) motif. Sequence analyses reveal that both proteins belong to the H-ferritin family with seven conserved amino acids in the ferroxidase center. Highest expression of Aifer1 is found in the mantle and adductor muscle, while that of Aifer2 is only in the latter tissue. These Aifer genes are differentially expressed following bacterial challenge of the scallop. The expression level of Aifer1 was acutely up-regulated (over 10 fold) at 6 h post-bacteria injection, whereas Aifer2 expression was not significantly changed by bacterial challenge. Both genes were effectively expressed in E. coli BL21 (DE3), producing proteins of similar molecular weight, approximately 23 kDa. Purified Aifer1 and Aifer2 proteins exhibited iron-chelating activity of 33.1% and 30.4%, respectively, at a concentration of 5 mg/ml. Cations, Mg(2+), Zn(2+) and Ca(2+), depressed iron-chelating activity of both proteins. Additionally, the E. coli cells expressing recombinant Aifer1 and Aifer2 showed tolerance to H(2)O(2), providing a direct evidence of the antioxidation function of ferritin. The results presented in this study suggest important roles of Aifer1 and Aifer2 in the regulation of iron homeostasis, immune response, and antioxidative stress in A. irradians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.