Nearly dislocation-free semipolar AlGaN templates are achieved on c-plane sapphire substrate through controlled nanowire coalescence by selective-area epitaxy. The coalesced Mg-doped AlGaN layers exhibit superior charge-carrier-transport properties. Semipolar-AlGaN ultraviolet light-emitting diodes demonstrate excellent performance. This work establishes the use of engineered nanowire structures as a viable architecture to achieve large-area, dislocation-free planar photonic and electronic devices.
One-dimensional compound semiconductor nanolasers, especially nanowire (NW)based nanolasers utilizing III-nitride (AlGaInN) materials system, are an emerging and promising area of research. Significant achievements have been made in developing III-nitride NW lasers with emission wavelengths from the deep ultraviolet (UV) to the near-infrared spectral range. The types of lasers under investigation include Fabry-Pérot, photonic crystal, plasmonic, ring resonator, microstadium, random, polariton, and two-dimensional distributed feedback lasers. The lasing thresholds vary by several orders of magnitude, which are a direct consequence of differing NW dimensions, quality of the NWs, characteristics of NW cavities, and coupling with the substrate. For electrically injected, such as ultralow-threshold and continuous-wave III-nitride NW lasers that can operate at room temperature, the following obstacles remain: carrier loss mechanisms including defect-related nonradiative surface recombination, electron overflow, and poor hole transport; low radiative recombination efficiency and high surface recombination; poor thermal management; and highly resistive ohmic contacts on the player. These obstacles must be overcome to fully realize the potential of these lasers.
We report on the demonstration of a new type of axial nanowire LED heterostructures, with the use of self-organized InGaN/AlGaN dot-in-a-wire core-shell nanowire arrays. The large bandgap AlGaN shell is spontaneously formed on the sidewall of the nanowire during the growth of AlGaN barrier of the quantum dot active region. As such, nonradiative surface recombination, that dominates the carrier dynamics of conventional axial nanowire LED structures, can be largely eliminated, leading to significantly increased carrier lifetime from ~0.3 ns to 4.5 ns. The luminescence emission is also enhanced by orders of magnitude. Moreover, the p-doped AlGaN barrier layers can function as distributed electron blocking layers (EBLs), which is found to be more effective in reducing electron overflow, compared to the conventional AlGaN EBL. The device displays strong white-light emission, with a color rendering index of ~95. An output power of >5 mW is measured for a 1 mm × 1 mm device, which is more than 500 times stronger than the conventional InGaN axial nanowire LEDs without AlGaN distributed EBLs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.