IntroductionThe purpose of this research was to investigate how dietary supplementation with fermented herbal residues (FCMR) affected birds' development capacity, quality of meat, gut barrier, and cecum microbiota.Methods540 cyan-shank partridge birds aged 47 days were chosen and divided into two groups of six replicates each and 45 birds for each replicate. The control group (CON) received a basal diet, while the trial group decreased a basic diet containing 5% FCMR.Results and discussionThe findings revealed that the addition of FCMR decreased FCR and increased ADG in broilers (P < 0.05). Adding FCMR increased steaming loss in broiler chicken breasts (p < 0.05). Supplementation with FCMR significantly enhanced VH/CD and VH in the bird's intestine (jejunum, duodenum, and ileum) (p < 0.05). In addition, the addition of FCMR significantly down-regulated mRNA expression of INF-γ, IL-6, IL-1β, and TNF-α and up-regulated mRNA expression of ZO-1, Occludin, and Claudin (P < 0.05). Microbial 16S rDNA high-throughput sequencing study revealed that supplements with FCMR modified the cecum microbiota, and α-diversity analysis showed that supplementation with FCMR reduced the cecum bacterial abundance in broilers (P < 0.05). At the phylum level, the relative abundance of Spirochaetota increased considerably following FCMR supplementation (P < 0.05). The broiler cecum's close lot of Prevotellaceae_UCG-001 (P < 0.05), Desulfovibrio, Muribaculaceae, and Fusobacterium (p < 0.05) reduced when FCMR was supplemented. Supplementation with FCMR can promote growth capacity and maintain intestinal health in birds by enhancing gut barrier function and modulating the inflammatory response and microbial composition.
This study was to assess the effects of tea residues-fermented feed (TR-fermented feed) on production performance, egg quality, serum antioxidant capacity, caecal microbiota, and ammonia emissions of laying hens. A total of 1,296 Lohmann laying hens have randomly distributed four groups with six parallels and fed with diets TR-fermented feed at the rates of 0 (control), 1, 3, and 5%. The inclusion of 1% (TR)-fermented feed resulted in a significant increase in egg-laying rate and average egg weight of birds, and a reduction in the feed-to-egg ratio when compared to the control group (p < 0.05). The addition of 1 and 3% of (TR)-fermented feed significantly improved the Haugh unit of eggs (p < 0.05). The eggshell thickness was observed to increase by almost one-fold upon the inclusion of 3 and 5% (TR)-fermented feed in the basal diet (p < 0.05). The supplementation of 3% (TR)-fermented feed significantly increased the content of methionine, tyrosine, proline, essential amino acids (EAA), alpha linoleic acid (C18:3n6), docosanoic acid (C22:0), docosahexaenoic acid (C22:6n3), twenty-three carbonic acids (C23:0), ditetradecenoic acid (C24:1) and total omega-3 polyunsaturated fatty acids (∑ω-3 PUFA) in the eggs (p < 0.05). The addition of a certain amount of (TR)-fermented feed can enhance the activity of glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD) in chicken serum, and reduce the level of malondialdehyde (MDA) (p < 0.05). The ammonia concentration in the hen house of laying hens in the treatment groups decreased significantly (p < 0.05). Bacteroidetes and Firmicutes, the main phyla in the cecal bacterial community, were differentially abundant in each group, comprising greater than 55 and 33%, respectively. Collectively, this research indicates that (TR)-fermented feed supplementation improves the performance of laying hens and reduces ammonia emissions and can be used in industry-scale layer production.
This research aimed to assess the impact of fermented Citri Sarcodactylis Fructus by-products (FCSF) on the growth performance, gut digestive enzyme activity, nutrient utilization efficiency, gut microbiota, and their metabolites in broiler chickens. A total of 1,080 male broiler chickens were allocated into four groups (T1–T4) consisting of 6 replicates per group, each containing 45 chickens. The basal diet was provided to group T1, while groups T2, T3, and T4 were supplemented with 1%, 3%, and 5% FCSF in the basal diet, respectively. The experimental period was 42 days. The findings revealed that supplementing FCSF improved the FW and ADG of broiler chickens, and led to a reduction in the F/G, ADFI, and mortality rate of broiler chickens (p < 0.05). Furthermore, supplementation with 3% and 5% FCSF improved the thigh yield, semi-eviscerated carcass yield, slaughter yield, and lipase activity in the duodenum and ileum of birds (p < 0.05). Additionally, supplementing 3% FCSF enhanced the activity of protease in the duodenum of broilers (p < 0.05). Moreover, supplementing 3% FCSF enhanced the utilization of total phosphorus, dry matter, crude protein, and crude ash in the feed by broilers (p < 0.05). Compared with the control group, supplementation of 3% and 5% FCSF reduced the serine content in broiler chicken breast meat (p < 0.05). Supplementing 1% FCSF significantly increased the C14:0, C14:1, and C20:1 content in the breast meat compared to the other experimental groups (p < 0.05). The levels of C20:4n6 and C23:0 in the breast meat of birds of FCSF supplemented groups were lower than in T1 (p < 0.05). Furthermore, the content of ∑ω-3PUFA decreased after supplementing with 3% and 5% FCSF (p < 0.05). 16SrDNA showed that supplementing 3% FCSF reduced the ACE, Chao1, and Shannon indices in the cecum of birds (p < 0.05). Supplementing 3% FCSF also decreased the abundance of the phylum Desulfobacterota and improved genera Coprobacter and Prevotella in the cecum of broiler chickens (p < 0.05). Metabolomic analysis of the gut microbiota revealed that supplementing 3% FCSF upregulated 6 metabolites and downregulated 16 metabolites (p < 0.05). Moreover, supplementing 3% FCSF downregulated 12 metabolic pathways and upregulated 3 metabolic pathways (p < 0.05). In summary our findings indicate that supplementing FCSF can improve the growth performance of broiler chickens by enhancing intestinal digestive enzyme activity, nutrient utilization, improving gut microbial diversity, and influencing the metabolism of gut microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.