Chronic wounds that are difficult to heal can cause persistent physical pain and significant medical costs for millions of patients each year. However, traditional wound care methods based on passive bandages cannot accurately assess the wound and may cause secondary damage during frequent replacement. With advances in materials science and smart sensing technology, flexible wearable sensors for wound condition assessment have been developed that can accurately detect physiological markers in wounds and provide the necessary information for treatment decisions. The sensors can implement the sensing of biochemical markers and physical parameters that can reflect the infection and healing process of the wound, as well as transmit vital physiological information to the mobile device through optical or electrical signals. Most reviews focused on the applicability of flexible composites in the wound environment or drug delivery devices. This paper summarizes typical biochemical markers and physical parameters in wounds and their physiological significance, reviews recent advances in flexible wearable sensors for wound detection based on optical and electrical sensing principles in the last 5 years, and discusses the challenges faced and future development. This paper provides a comprehensive overview for researchers in the development of flexible wearable sensors for wound detection.
Single‐atom catalysts (SACs) have attracted extensive interest owing to their maximized atomic utilization, low cost as well as outstanding catalytic activity, selectivity, and stability for diverse applications. Due to their excellent performance in electrocatalysis, SACs can be applied to electrochemical sensors, which have been a predominant tool employed in biosensing. In very recent studies, SAC‐based electrochemical biosensors have demonstrated enhanced sensing performances in biomarker detection and in vivo analysis. However, a comprehensive review of SAC‐based electrochemical biosensors has not been reported yet. Herein, we present a summary of the synthesis methods of SACs with their application in electrochemical sensor establishment and electrochemical characterization methods in electrochemical sensing. Biomedical applications utilizing SAC‐based electrochemical biosensors are introduced. Finally, the existing challenges and future prospects of SACs in the field of electrochemical biosensing are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.