Using the multireference configuration interaction method with a Davidson correction and a large orbital basis set (aug-cc-pVQZ), we obtain an energy grid that includes 32 038 points for the construction of a new analytical potential energy surface (APES) for the Ne + H(2)(+) → NeH(+) + H reaction. The APES is represented as a many-body expansion containing 142 parameters, which are fitted from 31 000 ab initio energies using an adaptive nonlinear least-squares algorithm. The geometric characteristics of the reported APES and the one presented here are also compared. On the basis of the APES we obtained, reaction cross sections are computed by means of quasi-classical trajectory (QCT) calculations and compared with the experimental and theoretical data in the literature.
The potential energy curves (PECs) of the bound states of M-X (M=Cu, Ag, and Au and X=He, Ne, and Ar) complexes have been calculated using the coupled cluster singles and doubles method with perturbative treatment of triple excitations. Large basis sets and bond functions, as well as the basis set superposition errors, are employed to obtain accurate PECs. The analytical potential energy functions (APEFs) are fitted using the PECs. The vibrational energy levels and the spectroscopic parameters for the complexes are determined using our APEFs and compared to the theoretical works available at present. We also find that the PECs are bound with similar van der Waals interactions, which implies that He, Ne, and Ar may be used for buffer-gas cooling; and Cu, Ag, and Au may be trapped with a similar method because Cu and Ag have been experimentally trapped with He buffer-gas cooling.
The coupled cluster singles and doubles method with perturbative treatment of triple excitations is applied to calculate the potentials of M(z)-X complexes (M = Cu, Ag, and Au; X = He, Ne, and Ar; and z = ±1). The bond functions and the basis set superposition errors are considered to obtain accurate interaction energies. The potential energy curves of all complexes are obtained. The vibrational energy levels and the spectroscopic parameters for these complexes are determined. The analytical potential energy functions are also fitted based on the potential energies.
This paper investigates the effect of basis sets through the potential energy curves (PECs) of six rare gas complexes He 2 , Ne 2 , Ar 2 , He-Ne, He-Ar, and Ne-Ar. The coupled cluster singles and doubles method with perturbative treatment of triple excitations, doubly augmented basis sets of d-aug-cc-pVQZ, bond functions, and basis set superposition errors are employed. The diffuse function is more effective than the polarization function on describing the dissociation energy. The PECs are fitted into analytical potential energy functions (APEFs) using three expressions. It is found that all the expressions are suitable for describing the complexes of rare gases. Based on these APEFs, the spectroscopic parameters are calculated and the results are compared with the theoretical and experimental data available in the literature.
The influence of the ultra-short pulse wavelength on the populations in the three electronic states of CsI molecule is investigated using the time-dependent wave packet method. The calculated results show that the populations in the two excited states approach to the maxima at the wavelengths of 369 nm and 297 nm, respectively. The photodissociation reaction channels of the CsI molecule can be chosen by controlling the pump pulse wavelength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.