Hypoxia is a major cause of fish morbidity and mortality in the aquatic environment. Hypoxia-inducible factors are very important modulators in the transcriptional response to hypoxic stress. In this study, we characterized and conducted functional analysis of hypoxia-inducible factor HIF1α and its inhibitor HIF1αn in Nile tilapia (Oreochromis niloticus). By cloning and Sanger sequencing, we obtained the full length cDNA sequences for HIF1α (2686bp) and HIF1αn (1308bp), respectively. The CDS of HIF1α includes 15 exons encoding 768 amino acid residues and the CDS of HIF1αn contains 8 exons encoding 354 amino acid residues. The complete CDS sequences of HIF1α and HIF1αn cloned from tilapia shared very high homology with known genes from other fishes. HIF1α show differentiated expression in different tissues (brain, heart, gill, spleen, liver) and at different hypoxia exposure times (6h, 12h, 24h). HIF1αn expression level under hypoxia is generally increased (6h, 12h, 24h) and shows extremely highly upregulation in brain tissue under hypoxia. A functional determination site analysis in the protein sequences between fish and land animals identified 21 amino acid sites in HIF1α and 2 sites in HIF1αn as significantly associated sites (α = 0.05). Phylogenetic tree-based positive selection analysis suggested 22 sites in HIF1α as positively selected sites with a p-value of at least 95% for fish lineages compared to the land animals. Our study could be important for clarifying the mechanism of fish adaptation to aquatic hypoxia environment.
Selection of new lines with high salinity tolerance allows for economically feasible production of tilapias in brackish water areas. Mapping QTLs and identifying the markers linked to salinity-tolerant traits are the first steps in the improvement of the tolerance in tilapia through marker-assisted selection techniques. By using QTL-seq strategy and linkage-based analysis, two significant QTL intervals (chrLG4 and chrLG18) on salinity-tolerant traits were firstly identified in the Nile tilapia. Fine mapping with microsatellite and SNP markers suggested a major QTL region that located at 23.0 Mb of chrLG18 and explained 79% of phenotypic variation with a LOD value of 95. Expression analysis indicated that at least 10 genes (e.g., LACTB2, KINH, NCOA2, DIP2C, LARP4B, PEX5R, and KCNJ9) near or within the QTL interval were significantly differentially expressed in intestines, brains, or gills under 10, 15, or 20 ppt challenges. Our findings suggest that QTL-seq can be effectively utilized in QTL mapping of salinity-tolerant traits in fish. The identified major QTL is a promising locus to improve our knowledge on the genetic mechanism of salinity tolerance in tilapia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.