In the present work, we describe four previously unreported cucurbituril-based coordination supramolecular self-assemblies, formed in the presence of alkali metal and cadmium ions. Unexpectedly, in the presence of potassium or rubidium and cadmium cations, cucurbituril prefers to coordinate with cadmium to form three dimensional frameworks. The alkali metal ions seem to play a role of structure inducer in HCl medium and are not present in the final structures. In neutral aqueous solution, cadmium cations also show [a]
Tuberculosis (TB) and human immunodeficiency virus type 1 (HIV‐1) infection are closely intertwined, with one‐quarter of TB/HIV coinfected deaths among people died of TB. Effector CD8+ T cells play a crucial role in the control of Mycobacterium tuberculosis (MTB) and HIV‐1 infection in coinfected patients. Adoptive transfer of a multitude of effector CD8+ T cells is an appealing strategy to impose improved anti‐MTB/HIV‐1 activity onto coinfected individuals. Due to extensive existence of heterologous immunity, that is, T cells cross‐reactive with peptides encoded by related or even very dissimilar pathogens, it is reasonable to find a single T cell receptor (TCR) recognizing both MTB and HIV‐1 antigenic peptides. In this study, a single TCR specific for both MTB Ag85B199‐207 peptide and HIV‐1 Env120‐128 peptide was screened out from peripheral blood mononuclear cells of a HLA‐A*0201+ healthy individual using complementarity determining region 3 spectratype analysis and transferred to primary CD8+ T cells using a recombinant retroviral vector. The bispecificity of the TCR gene‐modified CD8+ T cells was demonstrated by elevated secretion of interferon‐γ, tumour necrosis factor‐α, granzyme B and specific cytolytic activity after antigen presentation of either Ag85B199‐207 or Env120‐128 by autologous dendritic cells. To the best of our knowledge, this study is the first report proposing to produce responses against two dissimilar antigenic peptides of MTB and HIV‐1 simultaneously by transfecting CD8+ T cells with a single TCR. Taken together, T cells transduced with the additional bispecific TCR might be a useful strategy in immunotherapy for MTB/HIV‐1 coinfected individuals.
With the development of molecular biological technology, the association between genes and diseases has drawn increasing attention of researchers; the endothelial nitric oxide synthase (eNOS) gene has been reported to be a candidate gene for cardiovascular disease (CHD). The present study aimed to investigate the association between a polymorphism of eNOS and the risk of CHD in young people (≤40 years old), in addition to the underlying mechanism. A total of 234 cases of CHD in young individuals were collected as the CHD group and 228 cases of healthy individuals as the control group. Peripheral blood was collected and the genotype of the eNOS G894T polymorphism was identified by polymerase chain reaction-restriction fragment length polymorphism, the gene frequency was calculated and the distributions of genotype and allele frequency between the two groups were compared. Bioinformatics tools were employed to analyze the differences in the local protein structures of the eNOS G894T polymorphism and the biological mechanism was preliminary discussed. The results demonstrated that there were significant differences in the distribution of genotype frequency and allele frequency of the eNOS G894T gene polymorphism between the CHD group and control group (P<0.05). The risk of CHD in GT and TT genotypes were higher compared with the GG genotype (P<0.05). The G894T polymorphism led to Glu298Asp mutation of encoded protein, which is within the active site of eNOS, and partial structures of the protein were converted from random coil to α‑helix. In conclusion, the eNOS G894T gene polymorphism was associated with the occurrence and development of CHD in young people. The potential mechanism is that the G894T polymorphism leads to altered protein structure, which affects the function of eNOS in generating nitric oxide and cardiovascular diastole. The results of the present study suggested a potential target gene for the prevention and treatment of CHD in young people (≤40 years old).
During recovery from heat stress, plants clear away the heat-stress-induced misfolded proteins through the ubiquitin-proteasome system (UPS). In the UPS, the recognition of substrate proteins by E3 ligase can be regulated by the N-terminal acetyltransferase A (NatA) complex. Here, we determined that Arabidopsis STRESS-RELATED UBIQUITIN-ASSOCIATED-DOMAIN PROTEIN FACTOR 1 (SUF1) interacts with the NatA complex core subunit NAA15 and positively regulates NAA15. The suf1 and naa15 mutants are sensitive to heat stress; the NatA substrate N SNC1 is stabilized in suf1 mutant plants during heat stress recovery. Therefore, SUF1 and its interactor NAA15 play important roles in basal thermotolerance in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.