Oxidoreductases of the thioredoxin superfamily possess the C-X-X-C motif. The redox potentials vary over a wide range for these proteins. A crucial determinant of the redox potential has been attributed to the variation of the X-X dipeptide. Here, we substitute Lys for Gly at the first X of Escherichia coli thioredoxin to investigate how a positive charge would affect the redox potential. The substitution does not affect the protein's redox potential. The equilibrium constant obtained from pairwise reaction between the mutant and wild-type proteins equals 1.1, indicating that the replacement does not significantly affect the thiol-disulfide redox equilibrium. However, the catalytic efficiency of thioredoxin reductase on the G33K mutant decreases approximately 2.8 times compared to that of the wild type. The mutation mainly affects K(m), with little effect on k(cat). The mutation also inhibits thioredoxin's ability to reduce insulin disulfide by approximately one-half. Whether the mutant protein supports the growth of phages T3/7 and f1 was tested. The efficiency of plating (EOP) of T3/7 on the mutant strain decreases 5 times at 37 degrees C and 3 x 10(4) times at 42 degrees C relative to that of the wild-type strain, suggesting that interaction between phage gene 5 protein and thioredoxin is hindered. The mutation also reduces the EOP of phage f1 by 8-fold at 37 degrees C and 1.5-fold at 42 degrees C. The global structure of the mutant protein does not change when studied by CD and fluorescence spectra. Therefore, G33K does not significantly affect the overall structure or redox potential of thioredoxin, but primarily interferes with its interaction with other proteins. Together with the G33D mutation, the overall results show that a charged residue at the first X has a greater influence on the molecular interaction of the protein than the redox potential.
By searching the literatures, it was found that a total of 32 drugs interacting with herbal medicines in humans. These drugs mainly include anticoagulants (warfarin, aspirin and phenprocoumon), sedatives and antidepressants (midazolam, alprazolam and amitriptyline), oral contraceptives, anti-HIV agents (indinavir, ritonavir and saquinavir), cardiovascular drug (digoxin), immunosuppressants (cyclosporine and tacrolimus) and anticancer drugs (imatinib and irinotecan). Most of them are substrates for cytochrome P450s (CYPs) and/or P-glycoprotein (PgP) and many of which have narrow therapeutic indices. However, several drugs including acetaminophen, carbamazepine, mycophenolic acid, and pravastatin did not interact with herbs. Both pharmacokinetic (e.g. induction of hepatic CYPs and intestinal PgP) and/or pharmacodynamic mechanisms (e.g. synergistic or antagonistic interaction on the same drug target) may be involved in drug-herb interactions, leading of altered drug clearance, response and toxicity. Toxicity arising from drug-herb interactions may be minor, moderate, or even fatal, depending on a number of factors associated with the patients, herbs and drugs. Predicting drug-herb interactions, timely identification of drugs that interact with herbs, and therapeutic drug monitoring may minimize toxic drug-herb interactions. It is likely to predict pharmacokinetic herb-drug interactions by following the pharmacokinetic principles and using proper models that are used for predicting drug-drug interactions. Identification of drugs that interact with herbs can be incorporated into the early stages of drug development. A fourth approach for circumventing toxicity arising from drug-herb interactions is proper design of drugs with minimal potential for herbal interaction. So-called "hard drugs" that are not metabolized by CYPs and not transported by PgP are believed not to interact with herbs due to their unique pharmacokinetic properties. More studies are needed and new approached are required to minimize toxicity arising from drug-herb interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.